ERLANG

crypto

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.
crypto 4.1

December 2, 2017

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 2, 2017

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. Al rights reserved.

Redi stri bution and use in source and binary forms, with or w thout
nmodi fication, are permtted provided that the follow ng conditions
are net:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in
t he docunentation and/or other materials provided with the
di stribution.

3. Al advertising materials nentioning features or use of this
sof tware nust display the foll ow ng acknow edgnent :
"Thi s product includes software devel oped by the OpenSSL Proj ect
for use in the OpenSSL Tool kit. (http://ww. openssl.org/)"

4. The nanes "OpenSSL Tool kit" and "OpenSSL Project" nust not be used to
endorse or pronote products derived fromthis software wi thout
prior witten perm ssion. For witten perm ssion, please contact
openssl - cor e@penssl . or g.

5. Products derived fromthis software may not be called "OpenSSL"
nor may "QOpenSSL" appear in their nanes w thout prior witten
perm ssion of the OpenSSL Proj ect.

6. Redistributions of any form whatsoever nust retain the follow ng
acknow edgnent :
"Thi s product includes software devel oped by the OpenSSL Proj ect
for use in the OpenSSL Tool kit (http://ww. openssl.org/)"

¥ %k ok ok ok ok kR kR R 3k ok ok kR kR 3k ok ok Ok kR kR 3k ok ok Ok k% %k 3k ok Ok Ok *

THI S SOFTWARE | S PROVI DED BY THE QpenSSL PROJECT " "AS IS'' AND ANY

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

EXPRESSED OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPOSE ARE DI SCLAI MED. I N NO EVENT SHALL THE OpenSSL PRQJIECT OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT

NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;

LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON)

HONEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT,
STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE)

ARI SING IN ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED
OF THE PGSSI BI LI TY OF SUCH DAMAGE.

Thi s product includes cryptographic software witten by Eric Young
(eay@ryptsoft.com). This product includes software witten by Tim
Hudson (tjh@ryptsoft.com.

ok ok ok k% %k ok ok ok kX % % ok ok Ok

1.1.2 SSlLeay License

Copyright (C 1995-1998 Eric Young (eay@ryptsoft.com
Al'l rights reserved.

Thi s package is an SSL inplenmentation witten
by Eric Young (eay@ryptsoft.conj.
The inplenmentation was witten so as to conformw th Netscapes SSL.

This library is free for comrercial and non-commrerci al use as |ong as
the followi ng conditions are aheared to. The follow ng conditions
apply to all code found in this distribution, be it the RC4, RSA

| hash, DES, etc., code; not just the SSL code. The SSL documentati on
included with this distribution is covered by the same copyright ternms
except that the holder is TimHudson (tjh@ryptsoft.com.

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be renoved.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the formof a textual nmessage at program startup or

in docunentation (online or textual) provided with the package.

Redi stri bution and use in source and binary forns, with or without

nmodi fication, are permtted provided that the follow ng conditions

are net:

1. Redistributions of source code nust retain the copyright
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary formnust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunent ati on and/or other materials provided with the distribution.

3. Al advertising materials mentioning features or use of this software
must di splay the follow ng acknow edgenent :
"Thi s product includes cryptographic software witten by
Eri c Young (eay@ryptsoft.com"
The word 'cryptographic' can be left out if the rouines fromthe library
bei ng used are not cryptographic related :-).

4. |f you include any Wndows specific code (or a derivative thereof) from
the apps directory (application code) you nust include an acknow edgenent :
"Thi s product includes software witten by Ti m Hudson (tjh@ryptsoft.com"

THI'S SOFTWARE | S PROVI DED BY ERIC YOUNG ""AS |S'' AND
ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE

ok ok ok kR 3k sk ok ok ok %k 3k ok ok ok ok %k 3k ok ok ok k% ok k ok ok ok k% k% ok ok ok F X X

2 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

* | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
* ARE DI SCLAI MED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
* FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
* DAMAGES (I NCLUDI NG BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)
* HOWEVER CAUSED AND ON ANY THECRY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
* LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY
* QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY OF
* SUCH DAMAGE.
*
* The licence and distribution terns for any publically avail abl e version or
* derivative of this code cannot be changed. i.e. this code cannot sinply be
* copi ed and put under another distribution Iicence
* [including the GNU Public Licence.]
*/

1.2 FIPS mode

This chapter describes FIPS mode support in the crypto application.

1.2.1 Background

OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
isvalidated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
e Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.
Y ou should read and precisely follow the instructions of the Security Policy and User Guide.

Warning:

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not qualify as FIPS 140-2 validated if the numerous restrictionsin the Security Policy are not properly
followed.

e Configure and build Erlang/OTP with FIPS support:

$ cd $ERL_TOP
$./otp_build configure --enable-fips

checking for FIPS npbde_set... yes
$ make

If FI PS_node_set returnsno the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

« Setthefi ps_node configuration setting of the crypto applicationtot r ue beforeloading the crypto module.

Ericsson AB. All Rights Reserved.: crypto | 3

href
href

1.2 FIPS mode

Thebest placeisinthesys. conf i g system configuration file of the release.

e Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will al throw exception not _support ed.

Entering and leaving FIPS mode on a node aready running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in acritical section protected from any concurrently
running crypto operations. Furthermore in case of failure al crypto calls would have to be disabled from the Erlang
or nif code. Thiswould be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds

The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses a different OpenSSL API.

This means that the context (an opague type) returned from streaming crypto functions (hash_(init |
updat e| final),hmac_(init|update|final) andstream (init|encrypt|decrypt))isdifferent
and incompatible with regular builds when compiling crypto with FIPS support.

1.2.4 Common caveats

In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problemsin application relying
on crypto.

Warning:

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes

Although public key agorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA

1024 bit
DSS

1024 bit
EC algorithms

160 bit

Restrictions on elliptic curves

The Erlang API alows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing

Md5 isapopular choice as ahash function, but it is not secure enough to be validated. Try to use shainstead wherever
possible.

4 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

For exceptional, non-cryptographic use cases one may consider switchingto er | ang: nd5/ 1 aswell.

Certificates and encrypted keys

Asmd5 is not availablein FIPS mode it is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain all certificates (including the root CA's) must comply with this rule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithms which isaviable
aternative.

SNMP v3 limitations

It is only possible to use usMHMACSHAAUt hPr ot ocol and usmAesCf b128Pr ot ocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required

All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and shal hashes in the handshake for various
purposes:

e Authenticating the integrity of the handshake messages.

* Inthe exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

* Inthe PRF (pseud-random function) to generate keying materialsin cipher suites not using PFS.

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Note:

Certificates using weak (md5) digests may also cause problemsin TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the ssl application will use it properly, most
TL S implementations ignore this extension and simply send whatever certificates they were configured with.

Ericsson AB. All Rights Reserved.: crypto | 5

1.2 FIPS mode

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

6 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto
Application

The purpose of the Crypto application isto provide an Erlang API to cryptographic functions, see crypto(3). Note that
the APl ison afairly low level and there are some corresponding API functionsavailable in public_key(3), on ahigher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES

The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION

The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fi ps_nmode = bool ean()

Specifieswhether to run crypto in FIPS mode. This setting will take effect when the nif moduleisloaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 7

href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.

* Hashfunctions- Secure Hash Standard, The MD5 Message Digest Algorithm (RFC 1321) and The MD4
M essage Digest Algorithm (RFC 1320)

» Hmac functions- Keyed-Hashing for M essage Authentication (RFC 2104)

e Cmac functions- The AES-CMAC Algorithm (RFC 4493)

» Block ciphers- DESand AESin Block Cipher Modes- ECB, CBC, CFB, OFB, CTR and GCM
 RSA encryption RFC 1321

» Digital signatures Digital Signature Standard (DSS) and Elliptic Curve Digital Signature Algorithm
(ECDSA)

e Secure Remote Password Protocol (SRP - RFC 2945)

e gcm: Dworkin, M., "Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC", Nationa Institute of Standards and Technology SP 800- 38D, November 2007.

DATA TYPES

key_value() = integer() | binary()

Alwaysbi nar y() when used asreturn value

rsa_public() = [key_value()] = [E N

Where E is the public exponent and N is public modulus.

rsa_private() = [key_value()] =[E N D | [E N D Pl, P2, El, E2, C

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C isthe CRT coefficient. Terminology is taken from RFC 3447.

dss_public() = [key_value()] =[P, Q G Y]

Where P, Q and G are the dss parametersand Y is the public key.
dss_private() = [key_value()] =[P, Q G X

Where P, Q and G are the dss parameters and X isthe private key.
srp_public() = key_val ue()

Whereis A or B from SRP design

8 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

srp_private() = key_val ue()

Whereisa or b from SRP design

Where Verifier isv, Generator isg and Primeis N, DerivedKey is X, and Scrambler isu (optional will be generated
if not provided) from SRP design Version="3'|'6' | '6a

dh_public() = key_val ue()

dh_private() = key_val ue()

dh_parans() = [key_value()] =[P, G | [P, G PrivateKeyBitLength]

ecdh_public() = key_val ue()

ecdh_private() = key_val ue()

ecdh_parans() = ec_naned_curve() | ec_explicit_curve()

ec_explicit_curve() =

{ec_field(), Prime :: key_value(), Point :: key_value(), Order :: integer(), CoFactor :: none | integer()
ec_field() = {prinme_field, Prime :: integer()} |

{characteristic_two_field, M:: integer(), Basis :: ec_basis()}
ec_basis() = {tpbasis, K:: non_neg_integer()} |

{ppbasis, KL :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()}

onbasi s

ec_naned_curve() ->
sect571r1| sect571k1l| sect409rl| sect409kl| secp521rl| secp384rl| secp224rl| secp224kl
secpl92kl| secpl60r2| secpl28r2| secpl28rl| sect233rl| sect233kl| sect193r2| sect193r1l
sect131r2| sect131rl1| sect283rl| sect283kl| sect163r2| secp256kl| secpl60kl| secpl60rl
secpll2r2| secpll2rl| sect113r2| sect113rl| sect239kl| sect163rl| sect163kl| secp256r1l
secpl92r1
br ai npool P160r 1| brai npool P160t 1| brai npool P192r 1| brai npool P192t 1| brai npool P224r 1
br ai npool P224t 1| br ai npool P256r 1| brai npool P256t 1| brai npool P320r 1| br ai npool P320t 1
br ai npool P384r 1| brai npool P384t 1| brai npool P512r1| brai npool P512t1

Note that the sect curves are GF2m (characteristic two) curves and are only supported if the underlying OpenSSL has
support for them. See also crypto: supports/O

stream ci pher() = rc4 | aes_ctr

bl ock_ci pher() = aes_cbc | aes_cfhb8 | aes_cfbl28 | aes_ige256 | bl owfish_cbc

Ericsson AB. All Rights Reserved.: crypto | 9

href
href

crypto

bl owfi sh_cfb64 | des _cbc | des_cfb | des3 cbc | des3 cfb | des_ede3 | rc2_chbc

aead_cipher() = aes_gcm| chacha20_pol y1305

stream key() = aes_key() | rc4_key()

bl ock_key() = aes_key() | blowfish_key() | des_key()| des3_ key()

aes_key() = iodata()
Key length is 128, 192 or 256 bits
rc4_key() = iodata()
Variable key length from 8 bits up to 2048 bits (usually between 40 and 256)
bl owfi sh_key() = i odata()
Variable key length from 32 bits up to 448 bits
des_key() = iodata()
Key length is 64 bits (in CBC mode only 8 bits are used)
des3_key() = [binary(), binary(), binary()]
Each key part is 64 bits (in CBC mode only 8 bits are used)

digest_type() = md5 | sha | sha224 | sha256 | sha384 | sha512

rsa_digest_type() = md5 | ripendl60 | sha | sha224 | sha256 | sha384 | sha512

dss_digest _type() = sha | sha224 | sha256 | sha384 | sha512

Notethat the actual supported dss_digest_type depends on the underlying crypto library. In OpenSSL version>=1.0.1
the listed digest are supported, while in 1.0.0 only sha, sha224 and sha256 are supported. In version 0.9.8 only sha

is supported.

ecdsa_di gest_type() = sha | sha224 | sha256 | sha384 | sha512

sign_options() = [{rsa_pad, rsa_sign_padding()} | {rsa_pss_saltlen, integer()}]

10 | Ericsson AB. All Rights Reserved.: crypto

crypto

rsa_sign_paddi ng() = rsa_pkcsl _padding | rsa_pkcsl pss_paddi ng

md5 | ripendl60 | sha | sha224 | sha256 | sha384 | shab512

hash_al gori t hns()

md4 isalso supported for hash_init/1 and hash/2. Note that both md4 and md5 are recommended only for compatibility
with existing applications.

ci pher_algorithns() = aes_chc | aes_cfb8 | aes_cfbl128 | aes_ctr | aes_gcm
aes_i ge256 | bl owfish_cbc | blowfish_cfb64 | chacha20_pol y1305 | des_cbc | des_cfb
des3 _chc | des3_cfb | des_ede3 | rc2_cbc | rc4

mac_al gorithnms() = hmac | cmac

public_key algorithns() = rsa |dss | ecdsa | dh | ecdh | ec_gf2m

Note that ec_gf2m is not strictly a public key algorithm, but a restriction on what curves are supported with ecdsa
and ecdh.

Exports

bl ock_encrypt (Type, Key, PlainText) -> Ci pherText
Types:

Type = des_ecb | blowfish_ecb | aes_ecb

Key = bl ock_key()

Pl ai nText = iodata()
Encrypt Pl ai nText according to Type block cipher.

May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

bl ock_decrypt (Type, Key, Ci pherText) -> Pl ai nText
Types.

Type = des_ecb | blowfish _ecb | aes_ech

Key = bl ock_key()

Pl ai nText = iodata()
Decrypt G pher Text according to Type block cipher.

May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

bl ock_encrypt (Type, Key, lvec, PlainText) -> C pherText

bl ock_encrypt (AeadType, Key, lvec, {AAD, Pl ainText}) -> {C pherText,
Ci pher Tag}

bl ock_encrypt (aes_gcm Key, Ivec, {AAD, PlainText, TagLength}) ->
{Ci pher Text, G pherTag}

Types:
Type = bl ock_ci pher ()
AeadType = aead_ci pher ()

Ericsson AB. All Rights Reserved.: crypto | 11

crypto

Key = bl ock_key()
Pl ai nText = iodata()
AAD = | Vec = Ci pherText = CipherTag = binary()
TagLength = 1..16
Encrypt Pl ai nText according to Type block cipher. | Vec isan arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, encrypt Pl ai nText according to Type block
cipher and calculate Ci pher Tag that also authenticates the AAD (Associated Authenticated Data).

May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

bl ock_decrypt (Type, Key, lvec, G pherText) -> Pl ai nText

bl ock_decrypt (AeadType, Key, lvec, {AAD, G pherText, C pherTag}) -> PlainText
| error

Types:
Type = bl ock_ci pher ()
AeadType = aead_ci pher ()
Key = bl ock_key()
Pl ai nText = iodata()
AAD = | Vec = Ci pherText = Ci pherTag = binary()
Decrypt G pher Text according to Type block cipher. | Vec isan arbitrary initializing vector.
In AEAD (Authenticated Encryption with Associated Data) mode, decrypt Ci pher Text according to Type block

cipher and check the authenticity the Pl ai nText and AAD (Associated Authenticated Data) usingthe G pher Tag.
May return er r or if the decryption or validation fail's

May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

bytes to_integer(Bin) -> Integer

Types:
Bin = binary() - as returned by crypto functions
Integer = integer()

Convert binary representation, of an integer, to an Erlang integer.

conmput e_key(Type, O hersPublicKey, M/Key, Parans) -> SharedSecret
Types:
Type = dh | ecdh | srp
O hersPubl i ckey = dh_public() | ecdh _public() | srp_public()
MyKey = dh_private() | ecdh_private() | {srp_public(),srp_private()}
Paranms = dh_parans() | ecdh_parans() | SrpUserParans | SrpHostParans

SrpUser Parans = {user, [DerivedKey::binary(), Prine::binary(),
Cenerator::binary(), Version::aton() | [Scranbler:binary()]]}

SrpHost Paranms = {host, [Verifier::binary(), Prime::binary(),
Version::atom() | [Scranbler::binary]]}

Shar edSecret = binary()
Computes the shared secret from the private key and the other party's public key. See aso public_key:compute_key/2

12 | Ericsson AB. All Rights Reserved.: crypto

crypto

exor (Datal, Data2) -> Result
Types.
Datal, Data2 = iodata()
Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

gener ate_key(Type, Parans) -> {PublicKey, PrivKeyQut}
generate_key(Type, Paranms, PrivKeyln) -> {PublicKey, PrivKeyQut}
Types.

Type = dh | ecdh | rsa | srp

Paranms = dh_parans() | ecdh_parans() | RsaParans | SrpUserParans |
Sr pHost Par ans

RsaParanms = {Modul usSi zel nBits::integer(), PublicExponent::key_val ue()}

SrpUser Parans = {user, [CGenerator::binary(), Prine::binary(),
Version::atom()]}

SrpHost Params = {host, [Verifier::binary(), Generator::binary(),
Prime::binary(), Version::aton()]}

Publ i cKey = dh_public() | ecdh_public() | rsa_public() | srp_public()
PrivKeyln = undefined | dh_private() | ecdh_private() | srp_private()
PrivKeyQut = dh_private() | ecdh_private() | rsa_private() | srp_private()

Generates apublic key of type Type. Seeaso public_key:generate key/1. May throw exception an exception of class
error:

e badar g: an argument is of wrong type or hasan illegal value,
* | ow_entr opy: therandom generator failed dueto lack of secure "randomness’,
e conput ation_fail ed: the computation fails of another reason than| ow_ent r opy.

Note:

RSA key generationisonly availableif the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will throw exception er r or : not sup.

hash(Type, Data) -> Di gest

Types:
Type = nmd4 | hash_al gorithns()
Data = iodata()

Di gest = binary()
Computes a message digest of type Type from Dat a.
May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

hash_init(Type) -> Context

Types:
Type = nd4 | hash_al gorithns()

Ericsson AB. All Rights Reserved.: crypto | 13

crypto

Initializesthe context for streaming hash operations. Ty pe determineswhich digest to use. Thereturned context should
be used as argument to hash_update.

May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

hash_updat e(Cont ext, Data) -> NewCont ext
Types:
Data = iodata()
Updates the digest represented by Cont ext using the given Dat a. Cont ext must have been generated using

hash_init or a previous call to this function. Dat a can be any length. NewCont ext must be passed into the next
call tohash_updat e or hash_final.

hash_fi nal (Context) -> Di gest
Types:
Di gest = binary()

Finalizes the hash operation referenced by Cont ext returned from a previous call to hash_update. The size of
Di gest isdetermined by the type of hash function used to generate it.

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MaclLength) -> Mac
Types.
Type = hash_al gorithnms() - except ripendl60
Key = iodata()
Data = iodata()
MacLength = integer()
Mac = binary()
ComputesaHMAC of type Ty pe from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

hrmac_i nit (Type, Key) -> Context

Types:
Type = hash_algorithms() - except ripendl60
Key = iodata()
Context = binary()

Initializes the context for streaming HMAC operations. Ty pe determines which hash function to use in the HMAC
operation. Key isthe authentication key. The key can be any length.

hrmac_updat e(Cont ext, Data) -> NewCont ext
Types:
Cont ext = NewContext = binary()
Data = iodata()
Updates the HMAC represented by Cont ext using the given Dat a. Cont ext must have been generated using an

HMAC init function (such as hmac init). Dat a can be any length. NewCont ext must be passed into the next call
tohmac_updat e or to one of the functions hmac_final and hmac_final_n

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

Warning:

Do not use a Cont ext as argument in more than one call to hmac_update or hmac final. The semantics of
reusing old contextsin any way is undefined and could even crash the VM in earlier releases. The reason for this
limitation is alack of support in the underlying OpenSSL API.

hmac_fi nal (Context) -> Mac
Types:
Context = Mac = binary()

Finalizes the HMAC operation referenced by Cont ext . The size of the resultant MAC is determined by the type of
hash function used to generateiit.

hmac_final _n(Context, HashLen) -> Mac
Types.

Cont ext Mac = binary()

HashLen = non_neg_i nteger ()

Finalizes the HMAC operation referenced by Cont ext . HashLen must be greater than zero. Mac will be abinary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

cmac(Type, Key, Data) -> Mac
cmac(Type, Key, Data, MacLength) -> Mac
Types.
Type = bl ock_ci pher ()
Key = iodata()
Data = iodata()
MacLength = integer()
Mac = binary()
Computes a CMAC of type Type from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

info_fips() -> Status
Types:
Status = enabled | not_enabled | not_supported

Providesinformation about the FIPS operating status of crypto and the underlying OpenSSL library. If crypto wasbuilt
with FIPS support this can be either enabl ed (when running in FIPS mode) or not _enabl ed. For other builds
thisvalueisalwaysnot _support ed.

Warning:

In FIPS mode al non-FIPS compliant algorithms are disabled and throw exception not _suppor t ed. Check
supports that in FIPS mode returns the restricted list of available algorithms.

Ericsson AB. All Rights Reserved.: crypto | 15

crypto

info Iib() -> [{Nane, Ver Num Ver Str}]
Types.

Name = binary()

Ver Num = i nt eger ()

Ver Str = binary()

Provides the name and version of the libraries used by crypto.

Nane isthe name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info_lib().
[{<<"QpenSSL" >>, 269484095, <<" (penSSL 1.1.0c 10 Nov 2016"">>}]

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
openssl v. h) used when crypto was compiled. Thetext variant representsthe OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

mod_pow(N, P, M -> Result
Types:
N, P, M= binary() | integer()
Result = binary() | error
Computes the function N*P nod M

next iv(Type, Data) -> Nextl Vec
next iv(Type, Data, |Vec) -> Nextl Vec

Types:
Type = des_cbc | des3_chbc | aes_chbc | des_cfb
Data = iodata()
I Vec = NextlVec = binary()

Returnstheinitialization vector to be used in the next iteration of encrypt/decrypt of type Type. Dat a isthe encrypted
data from the previous iteration step. The | Vec argument is only needed for des_cf b as the vector used in the
previous iteration step.

private_decrypt(Type, CipherText, PrivateKey, Padding) -> Pl ainText
Types:

Type = rsa
Ci pher Text = binary()
PrivateKey = rsa_private()

Paddi ng = rsa_pkcsl padding | rsa_pkcsl_oaep_padding | rsa_no_paddi ng
Pl ai nText = binary()

16 | Ericsson AB. All Rights Reserved.: crypto

crypto

Decryptsthe G pher Text , encrypted with public_encrypt/4 (or equivalent function) using the Pr i vat eKey, and
returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

private_encrypt(Type, PlainText, PrivateKey, Padding) -> C pherText
Types:

Type = rsa

Pl ai nText = binary()

Thesizeof the Pl ai nText must belessthanbyt e _si ze(N)- 11 ifrsa_pkcsl paddi ng isused, and
byte size(N) ifrsa _no_paddi ng isused, where N is public modulus of the RSA key.

PrivateKey = rsa_private()
Paddi ng = rsa_pkcsl padding | rsa_no_paddi ng
Ci pher Text = binary()

Encryptsthe Pl ai nText usingthePri vat eKey and returnsthe ciphertext. Thisisalow level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

public_decrypt (Type, C pherText, PublicKey, Padding) -> PlainText
Types:
Type = rsa
Ci pher Text = binary()
Publ i cKey = rsa_public()
Paddi ng = rsa_pkcsl_padding | rsa_no_paddi ng
Pl ai nText = binary()
Decryptsthe Gi pher Text , encrypted with private_encrypt/4(or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public_encrypt(Type, PlainText, PublicKey, Padding) -> G pherText
Types:

Type = rsa

Pl ai nText = binary()

Thesizeof the Pl ai nText must belessthanbyt e _si ze(N)- 11 ifrsa_pkcsl paddi ng isused, and
byte size(N) ifrsa _no_paddi ng isused, where N is public modulus of the RSA key.

Publ i cKey = rsa_public()
Paddi ng = rsa_pkcsl padding | rsa_pkcsl oaep_padding | rsa_no_paddi ng
Ci pher Text = binary()

Encryptsthe Pl ai nText (messagedigest) usingthePubl i cKey and returnsthe G pher Text . Thisisalow level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand_seed(Seed) -> ok
Types:
Seed = binary()
Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the

system you are running on does not have enough "randomness’ built in. Normally thisis when strong_rand bytes/1
throws| ow_ent r opy

Ericsson AB. All Rights Reserved.: crypto | 17

crypto

rand_uni form Lo, H) -> N
Types.
Lo, Hi, N = integer()

Generate arandom number N, Lo =< N < Hi. Usesthecrypt o library pseudo-random number generator.
Hi must be larger than Lo.

sign(Al gorithm DigestType, Mg, Key) -> binary()
sign(Al gorithm DigestType, Mg, Key, Options) -> binary()
Types:

Algorithm=rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" datato be signed or it is the hashed value of "cleartext” i.e. the digest
(plaintext).

Di gest Type = rsa_digest _type() | dss_digest type() | ecdsa_digest_type()
Key = rsa _private() | dss_private() | [ecdh_private(), ecdh_parans()]
Options = sign_options()

Creates adigital signature.

Algorithm dss can only be used together with digest type sha.

See a'so public_key:sign/3.

start() -> ok

Equivalent to application:start(crypto).

stop() -> ok
Equivalent to application:stop(crypto).

strong_rand_bytes(N) -> binary()
Types:
N = i nteger()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng

seeded and periodically mixed with operating system provided entropy. By default thisisthe RAND byt es method
from OpenSSL.

May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness’.

rand_seed() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN _rand_r ange), and saves it on process dictionary before returning it as well. See also
rand: seed/1.

Example

_ = crypto:rand_seed(),
_IntegerVal ue = rand: uni form(42), %|[1; 42]
_Fl oat Val ue = rand: uniforn(). %[0.0; 1.0[

18 | Ericsson AB. All Rights Reserved.: crypto

crypto

rand_seed_s() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL'sBN _r and_r ange). Seeasorand:seed ¢/1.

stream.init(Type, Key) -> State
Types:

Type = rc4

State = opaque()

Key = iodata()

Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

stream.init(Type, Key, IVec) -> State
Types:
Type = aes_ctr
State = opaque()
Key = iodata()
I Vec = binary()
Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key isthe AES key and must

be either 128, 192, or 256 hits long. | Vec is an arbitrary initializing vector of 128 hits (16 bytes). This state is for
use with stream_encrypt and stream_decrypt.

stream encrypt(State, PlainText) -> { NewState, G pherText}
Types:
Text = iodata()
Ci pher Text = binary()
Encrypts Pl ai nText according to the stream cipher Type specified in stream_init/3. Text can be any number

of bytes. The initial St ate is created using stream init. NewSt at e must be passed into the next call to
stream encrypt.

stream decrypt (State, G pherText) -> { NewState, PlainText }
Types:
Ci pher Text = iodata()
Pl ai nText = binary()
Decrypts Ci pher Text according to the stream cipher Type specified in stream_init/3. Pl ai nText can be any

number of bytes. The initial St at e is created using stream init. NewSt at e must be passed into the next call to
stream decrypt.

supports() -> Al gorithnlist

Types:
Al gorithniist = [{hashs, [hash_algorithnms()]}, {ciphers,
[cipher_algorithnms()]}, {public_keys, [public_key algorithnms()]}, {nacs,
[mac_al gorithms()]}]

Can be used to determine which crypto algorithms that are supported by the underlying OpenSSL library

Ericsson AB. All Rights Reserved.: crypto | 19

crypto

ec_curves() -> EllipticCurveli st
Types:
Elli pticCurveList = [ec_naned_curve()]
Can be used to determine which named elliptic curves are supported.

ec_curve(NanmedCurve) -> EllipticCurve
Types:
NamedCurve = ec_naned_curve()
EllipticCurve = ec_explicit_curve()
Return the defining parameters of aelliptic curve.

verify(Al gorithm DigestType, Mg, Signature, Key) -> bool ean()
verify(A gorithm DigestType, Mg, Signature, Key, Options) -> bool ean()
Types.
Algorithm=rsa | dss | ecdsa
Msg = binary() | {digest,binary()}
The msg is either the binary "cleartext" data or it is the hashed value of "cleartext” i.e. the digest (plaintext).
Di gest Type = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
Si gnature = binary()
Key = rsa_public() | dss_public() | [ecdh_public(),ecdh_parans()]
Options = sign_options()
Verifiesadigital signature
Algorithm dss can only be used together with digest type sha.

See aso public_key:verify/4.

20 | Ericsson AB. All Rights Reserved.: crypto

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Reference Manual
	crypto
	crypto
	block_encrypt/3
	block_decrypt/3
	block_encrypt/4
	block_encrypt/4
	block_encrypt/4
	block_decrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	cmac/3
	cmac/4
	info_fips/0
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	sign/4
	sign/5
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	verify/5
	verify/6

