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Preface

Biostatistics is one of the scientific fields for which the developments during
the last decades of the 20th century have been the most important. Bio-
statistics is a pluri-disciplinary area combining statistics and biology, but
also agronomics, medicine or health sciences. It needs a good knowledge of
the mathematical background inherent in statistical methodology, in order
to understand the various fields of applications. The idea of this book is to
present a variety of research papers on the state of art in modern biostatistics.

Biostatistics is interacting with many scientific fields. To highlight this wide
diversity, we deliberately put these interactions at the center of our project.
Our book is therefore divided into two parts. Part I is presenting several
statistical models and methods for different biologic applications, while Part
IT will be concerned with problems and statistical methods coming from other
related scientific fields.

This book intends to provide a basis for many people interested in biostatis-
tics and related sciences. Students, teachers and academic researchers will
find an overview on modelling and statistical analysis of biological data. Also,
the book is meant for practicioners involved in research organisations (phar-
macologic industry, medicine, food industry,..) for which statistics is an in-
dispensable tool.

Biology is a science which has always been in permanent interaction with
many other fields such as medicine, physics, environmetrics, chemistry, math-
ematics, probability, statistics . ... On the other hand, statistics is interacting
with many other fields of mathematics as with almost all other scientific dis-
ciplines, including biology. For all these reasons, biostatistics is strongly
dependent on other scientific fields, and in order to provide a wide angle
overview we present here a rich diversity of applied problems.

Each contribution of this book presents one (or more) real problem. The
variation ranges from biological problems (see Chapter 1 and 10), medical
contributions (see Chapters 2, 4, 5, 8, 9 or 11) and genomics contributions (see
Chapters 3 and 7), to applications coming from other scientific areas, such as
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environmetrics (see Chapters 12), chemometrics (see Chapter 13), geophysics
(see Chapters 17 and 18) or image analysis (see Chapter 18). Because all these
disciplines are continuously taking benefits one from each other, this choice
highlights as well how each biostatistical method and modelling is helpful in
other areas and vice versa.

A good illustration of such a duality is provided by hazard analysis, which is
originally a medical survival problem (see Chapters 4, 9 or 11) but which leads
to substancial interest in many other fields (see e.g. the microearthquakes
analysis presented in Chapter 17). Another example is furnished by spatial
statistics (see Chapters 15 or 18) or food industry problems (see Chapter 13),
which are apparently far from medical purposes but whose developments
have obvious (and strong) consequences in medical image analysis and in
biochemical studies.

Due to the variety of applied biostatistical problems, the scope of meth-
ods is also very large. We adress therefore the diversity of these statistical
approaches by presenting recent developments in descriptive statistics (see
Chapters 7, 9, 14 and 19), parametric modelling (see Chapters 1, 2, 6 and
18) nonparametric estimation (see Chapters 3, 4, 11, 15 and 17) and semi-
parametrics (see Chapters 5, 8 and 10). An important place is devoted to
methods for analyzing functional data (see Chapters 12, 13, 16), which is
currently an active field of modern statistics.

An important feature of biostatistics is to have to deal with rather large
statistical sample sizes. This is particular true for genomics applications (see
Chapters 3 and 7) and for functional data modelling (see Chapters 12, 13
and 16). The computational issues linked with the methodologies presented in
this book are carried out thanks to the capacities of the XploRe environment.
Most of the methodological contributions are accompanied with automatic
and/or interactive XploRe quantlets.

We would like to express our gratitude to all the contributors. We are confi-
dent that the scope of papers will insure a large impact of this book on future
research lines and/or on applications in biostatistics and related fields. We
would also like to express our sincere gratitude to all the researchers that
we had the opportunity to meet in the past years. It would be tedious (and
hardly exhaustive) to name all of them expressely here but specific thanks
have to be adressed to our respective teams, will special mention to Anton
Andriyashin in Berlin and to the participants of the STAPH working group
in Toulouse.

July 2006 Wolfgang Hardle, Yuichi Mori
Berlin, Okoyama, Toulouse and Philippe Vieu
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1 Discriminant Analysis Based on
Continuous and Discrete
Variables

Avner Bar-Hen and Jean-Jacques Daudin

1.1 Introduction

In discrimination, as in many multivariate techniques, computation of a dis-
tance between two populations is often useful. For example in taxonomy, one
can be interested not only in discriminating between two populations but in
having an idea of how far apart the populations are. Mahalanobis’ A? has
become the standard measure of distance when the observations are quan-
titative and Hotelling derived its distribution for normal populations. The
aim of this chapter is to adapt these results to the case where the observed
characteristics are a mixture of quantitative and qualitative variables.

A problem frequently encountered by the practitioner in Discriminant Analy-
sis is how to select the best variables. In mixed discriminant analysis (MDA),
i.e., discriminant analysis with both continuous and discrete variables, the
problem is more difficult because of the different nature of the variables.
Various methods have been proposed in recent years for selecting variables
in MDA. Here we use two versions of a generalized Mahalanobis distance
between populations based on the Kullback-Leibler divergence for the first
and on the Hellinger-Matusita distance for the second. Stopping rules are
established from distributional results.
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1.2 Generalisation of the Mahalanobis Distance

1.2.1 Introduction

Following Krzanowski (1983) the various distances proposed in the literature
can be broadly classified in two categories:

1. Measures based on ideas from information theory (like Kullback-Leibler
measures of information for example)

2. Measures related to Bhattacharya’s measure of affinity (like Matusita’s
distance for example)

A review of theses distance measures can be found, for example, in Adhikari
and Joshi (1956).

Mixture of continuous and discrete variables is frequently encountered in dis-
criminant analysis. The location model (Olkin and Tate, 1961; Krzanowski,
1990) is one possible way to deal with these data. Gower (1966) proposed
a formula for converting similarity to distance. Since this transformation
corresponds to the transformation of Bhattacharya’s measure of affinity to
Matusita’s distance, Krzanowski (1983) studied the properties of Matusita’s
distance in the framework of the location model. Since no distributional
properties were obtained, Krzanowski (1984), proposed to use Monte Carlo
procedures to obtain percentage points. This distance was also proposed as
a tool of selection of variables (Krzanowski, 1983). Distributional results
for Matusita will be presented in Section 1.2.3. At first we present another
generalization of the Mahalanobis distance, J, based on the Kullback-Leibler
divergence.

One of the aims of discriminant analysis is the allocation of unknown entities
to populations that are known a priori. A preliminary matter for considera-
tion before an outright or probabilistic allocation is made for an unclassified
entity X is to test the assumption that X belongs to one of the predefined
groups m; (i = 1,2,...,n). One way of approaching this question is to test
if the smallest distance between X and 7; is null or not. Most of the results
were obtained in the case of linear discriminant analysis where the probabil-
ity distribution function of the populations is assumed to be normal and with
a commom variance—covariance matrix 3 (McLachlan, 1992). Generally, the
squared Mahalanobis distance is computed between X and each population
m;. X will be assessed as atypical if the smallest distance is bigger than a
given threshold. Formally a preliminary test is of the form:

Hp:mind(X,m;) =0 Versus Hy :mind(X,m;) >0
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In practical case, the assumption of normality can be unrealistic. For example
in taxonomy or in medicine, discrete and continuous measurements are taken.
We propose a preliminary test to the general parametric case

1.2.2 Kullback—Leibler Divergence

The idea of using distance to discriminate between population using both con-
tinuous and categorical variables was studied by various authors, see Cuadras
(1989), Morales, Pardo and Zografos (1998), Nakanishi (1996), Nufiez, Vil-
larroya and Oller (2003). We generalise the Mahalanobis distance using the
divergence defined by Kullback-Leibler (Kullback, 1959) between two gener-
alised probability densities f1(X) and f2(X):

J = J{H(X); fo(X)}
/{fl(X) — f2(X)}log

£1(X)
0™

where A , pp and po are three probability measures absolutely continuous
with respect to each other and f; is the Radon—Nikodym derivative of pu;
with respect to .

Except the triangular inequality, the Kullback-Leibler distance has the prop-
erties of a distance. Moreover, if f; and f; are multivariate normal distribu-
tions with common variance-covariance matrix then J(f1; f2) is equal to the
Mahalanobis distance.

Application to the Location Model

Suppose that ¢ continuous variables X = (X7 , ... | Xq)—r and d discrete
variables Y = (Y1,...,Yy)" are measured on each unit and that the units
are drawn from the population 7; or the population 7.

Moreover suppose that the condition of the location model (Krzanowski,
1990) holds. This means that:

e The d discrete variables define a multinomial vector Z containing c
possible states. The probability of observing state m in the population
T, is:

pim >0 (m=1,...,¢) and ZPile, (i=1,2)
m=1
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e Conditionally on Z = m and 7;, the ¢ continuous variables X follow a
multivariate normal distribution with mean u(m)

1
matrix Egm)

, variance—covariance

and density:
fim(X) = f(X|Z =m,m)
e For the sake of simplicity, we assume Z(m) Z(m) 3.

Since the aim is to compute the distance between 7; and w5 on the basis of
the measurement made on X and Z, the joint density of X and Z given m;
is needed:

filz,z) = Zfzm p(Z = m|m;)I(z =m)

Zfzm pzm Z:m)

This model was extended by some authors. Liu and Rubin (1998) relaxed
the normality assumption. Bedrick,, Lapidus and Powell (2000) considered
the inverse conditioning and end up with a probit model and de Leon and
Carriére (2004) generalize the Krzanowski and Bedrick approach.

PROPOSITION 1.1 By applying the Kullback—Leibler measure of dis-
tance to the location model, we obtain:

J = Ji+J (1.1)
with n
J1 =Y (Pim — pam)log ="
oy P2m
and 1
f2=3 S 01 + p2m) (1 — p) T (™ — ul™)

m

The proof is straightforward.

Remark: This expression is meaningless if p;,,, = 0.
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COROLLARY 1.1 If the continuous variables are independent of the dis-
crete variables then:

(m) _

™= and  pdM =

W for all m

and
Pim _
J = Z(plm — pam) log pil + (1 — p2) TET (1 — p2)

which means that the Kullback-Leibler distance is equal to the sum of the
contribution of the continuous and the discrete variables. This result is logical
since Jy represents the information based on Z, and Jo the information based
on X knowing Z.

Asymptotic Distribution of the Kullback-Leibler Distance in the Location
Model

Generally the p;m, tim and 3 are unknown and have to be estimated from
a sample using a model. Consider that we have two samples of size n;
and ns respectively available from the population m; and 7y and let ng,
be the number of individuals, in the sample drawn from 7;, occupying the
state m of the multinomial variable Z. In the model, there are two kinds of
parameters: those which depend on the populations, and noisy parameters
which are independent from the populations. They can be considered as noisy
parameters since this category of parameters is not involved in the distance
J. For example, if the mean is modelled with an analysis of variance model:

where « is the population effect and ( the discrete state effect. The expression
of the distance is:

Him — H2m = 01 — Q2

So the f3,, can be considered to be noisy parameters since they are not in-
volved in the distance.

Let p be the vector of probability associated to the multinomial state of Z
then

p=p(n) (1.2)
where 1 = (14,M:i); M is the set of noisy parameters and 7;, is the set of

parameters used to discriminate between two populations.

Let r be the cardinal of 7;;,. In the case of the location model, the p;,, are
generally estimated through a log-linear model.
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Let u be the vector of the mean of the continuous variables for the different
states of Z then:

fr = p(§) (1.3)

where € = (€4,&m); &q is the set of noisy parameters and &;, is the set of
parameters used to discriminate between two populations.

Let s be the cardinal of £;;,. In the case of the location model, the p, are
generally estimated through an analysis of variance model. Asparoukhov
and Krzanowski (2000) also studied the smoothing of the location model
parameters.

The aim of this section is to study the distributional property of both parts
of the distance to obtain a test and a confidence interval for the classical
hypothesis. Formally the following hypothesis are tested:

Hop1 : J1 =0 Versus Hiy1:J1>0
H02 :Jo=0 Versus His:J9>0
Hy:J=0 (H(n ﬂH()Q) versus Hi:J>0 (Hll @] H12)

Asymptotic Results

Let 01 = (T]aa €a7 Mib, glb) = (6a7 eib) fori = la 2 where Na, €a7 Mib, gib are defined
in (1.2) and (1.3). The following regularity conditions are assumed:

e 0, is a point of the parameter space ©, which is assumed to be an open
convex set in a (r + s)-dimensional Euclidean space.

e f(x,6;) has continuous second—order partial derivatives with respect to
the 6;’s in ©,

e 0, is the maximum likelihood estimator of 6;

e For all §; € ©,

of(x,0; 0% f(x,0; )
/ﬂT’i)d)\(m) :/J(;(Ti)d)\(a:) —0 i=1,2

e The integrals

o(0;) :/{W}Qﬂx,ei)d}\(m) T

are positive and finite for all §; € ©.
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It is obvious that the location model satisfies these conditions. Let .J = J(é)
be an estimator of J.

PROPOSITION 1.2 Under Hy: 61 = 65 =0y , when ny — 00, ng — 00
and Z—; —

mn2 g X2(r + s) (1.4)

ni + no

where r are s are the dimension of the space generated by n;, and &

Proof:

7 _ ) N f(l‘,é )
J-/{f(x,@l) —f(m,ﬁg)}log{f(Lé)}d)\(;v) (1.5)

Since pim > 0, the regularity conditions are satisfied. Therefore,Under Ho:
01 = 03 = 0y a Taylor expansion of first order of f(z,0;) and f(x,02) at the
neighbourhood of 6y can be used:

B - oJ aJ
_ _gnT Y9 T9oJ
J = J+(61—61) 691—0—(9 —09) 96,
1. 0%J 1,4 0%J .
+§(91 - 91)1—670%(91 —01)+ 5(92 - 92)1—870%(92 —0s)
(6= 0)T =L 6y~ 00) + (B — 01) + (6 — 62)
2 2 96,005 1 1 ot 1 o(b2 2
Under Hy:
2 Of (x,01) f(z,6h) _3f($,91) f(z,02) .
= | e fng - Y e v o

since 01 = 0y = 0y and f %&’fl) 0. For the same reason 860‘] =0

For all i,5 =1,2:
0%J f x, 90 A
= (6;i—0:)" (90)(93‘ - 93')

where I(6p) represents the information matrix of Fisher.
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Asymptotically, under Hy, (1.5) becomes:

J o= §<é1-»aﬁT1<ow<é1-»@»—k§<éz—»&»T1<9w<éz—-ew
+(01 — 00) T I(60)(82 — 60)
= (01— 02)"1(60)(0: — 02)

Since 6; is the maximum likelihood estimator of fy (Rao, 1973):
V1i(0; — 6g) ~ N, {0,1_1(90)} (i=1,2) Then:

ning ~ 1 1
—(0,— 0 ~ N, —1 (0
S o)~ N {0 o))

ninz U
0, — 6 ~ N, I (6
n1+n2(2 0) p{o’l (0)}
Then
nin2 1
—= 1(09)2 (01 — 05) ~ N, 1
Vi 100 (6= 02) ~ Ny(0,1)
Finally,
nin9 N A\ T A A 2
i (91 92) 1(60) (91 92) 2(r +s)

COROLLARY 1.2 Under Hy;:

ninz - ni
Ji ~ x3(r) when ny — 00 , Ny — 00 and — — u
ni + na 2

Proof: It is enough to apply the proposition 1.2 with ¢ = 0, which means
the absence of continuous variables.

PROPOSITION 1.3 Under Hpa:

ning > n
JQNXQ(S) when ny — 00 , Ny — 00 and — — u
ny + na ng

Proof: The proof is very similar to the proof of the proposition 1.2.

1.2.3 Asymptotic Distribution of Matusita Distance

Krzanowski (1983) used Bhattacharya’s affinity measure:

p= [ FHa.00 @ 000Nw)
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to define the distance:
1 1 2
& = [{HEo) - e} dw
= 2—-2p

This distance is also known as the Hellinger distance. In the location model
context Krzanowski has obtained:

1 1 _
K=2- 2Z(p1mp2m)2 eXP{_g(Ml,m - ,U/Z,m)TE 1(Ml,m - ﬂ?,m)}
m

Let 0; = (May&asMbir Epi) = (04,0p;) for i = 1,2. Under Hy = (61 = 6), we
have &,; = 0 and np; = 0 for i = 1, 2.

Under the usual regularity conditions, we prove the following result:

PROPOSITION 1.4 Let u €]0,1[, K = K(6y,65) with
N . . 1 1, . N A1 R
KE=2-2Y (prmbam) exp{=2 (m = f12,m) "X (11, = fiz.m)}

Assume that Hy: 01 = 0o = 0y is true and that él and ég are indepen-
dent asymptotically efficient estimates of 60y. Then for ny — 00, ny — 00,
ny/ng — u

Proof
Under Hy: 67 = 05 = 0y, we obtain:

K(8) =0
0K _ 0K _
00, 00,

and

PK K PK 1/ f%(x,00)
203 003 00,00, 2 ) f(x,00)

where I(6p) is the information matrix of Fisher. Under usual regularity
conditions (Bar-Hen and Daudin, 1995), the Taylor expansion of the affinity

aN(w) = 3 1(60)
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at the neighborhood of 0y can be derived and using the previous result we
have, under Hy:

K(0y,0,) ~ i(él — 0,) T 1(60) (61 — G)

Since 6; are independent asymptotically efficient estimator of 6,
PN
n? (0; — o) ~ N, (0,17(6p)) (i =1,2). Then:

ning
ni + N2
1

(”1”2>2(ég—eo) ~ Np{o,lul—l(ao)}

n1 + No +u

Nl=

(01— 60) ~ Np{o,liurl(ao)}

Then .
nin 2 - A
(”) 1(60)* (91 - 92> ~ N, (0,1)

ny + no

Additional results can be found in Bar-Hen and Daudin (1998).

1.2.4 Simulations

The level and the power of the test described in the previous section were
evaluated through simulations. One continuous variable and two binary vari-
ables are considered. Hence the multinomial vector Z has 4 levels. The
estimates of the means, the proportions and the variance are the maximum
likelihood estimates. These estimates corresponds to saturated model and
therefore the test of the distance has 7 degrees of freedom. It has to be noted
that no correction factor for the case p;;, = 0 and therefore empty cells are
taken into account for the computation of the distance.

Four cases were studied:
1. no population effect for the discrete variables and no population effect
for the continuous variables (K = 0);

2. no population effect for the discrete variables but a population effect
for the continuous variables;

3. a population effect for the discrete variables but no population effect
for the continuous variables;
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4. a population effect for the discrete and the continuous variables.

For the continuous variables, the population effect is equal to the standard
error:

1 if population effect is not present

Bim — H2m { 0 if population effect is present
o

For the discrete variables:

Pim 0 if population effect is present
log | — | = 1 i lati foct is .
Pom 1t population effect 1s not present

Since the aim of these simulations is to estimate the rate of convergence of
the asymptotic distributions, populations of size 20 and 100 were considered.
This gives three new cases:

1. population 71 of size 10 and population 7o of size 10
2. population 7y of size 30 and population 7y of size 30
3. population 7y of size 100 and population 75 of size 100
There are 12 combinations of hypotheses and populations sizes. 1000 simula-

tions were done for each combination. The table below presents the number
of non-significant tests at the 5% level.

By using the property of the binomial distribution, one may expect to obtain
1

50 4 1.96 x (1000 x 0.5 x 0.95)z = 50+ 14 tests to be non—significant if the

null hypothesis is true.

From Table 1.1, we deduce that the level of the test is respected as soon as
n > 30. This means 30/4 observations per cell. The power of the test tends
to 1 but the convergence is slower for the discrete variables. This result is
not surprising.

It has to be noted that these simulations are limited. The use of non-saturated
model for the estimation of the parameters and the use of a correction factor
for empty cell can probably alter the results.

1.3 Methods and Stopping Rules for Selecting
Variables

As in the usual discriminant analysis with continuous variables, selection of
variables is a problem of practical importance. In fact, in the location model
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Table 1.1: Number of significant test at the 5% level for the various hypothe-

ses
population effect for size of population Hypothesis tested
discrete var. continuous var. ™ Ty K=0
no no 10 10 68
no no 30 30 60
no no 100 100 60
no yes 10 10 251
no yes 30 30 798
no yes 100 100 1000
yes no 10 10 144
yes no 30 30 255
yes no 100 100 711
yes yes 10 10 344
yes yes 30 30 872
yes yes 100 100 1000

context, the question is more precisely ”which terms and which continuous
variables must be included in the model?” where the models concerned are
log-linear and MANOVA. Interest in this topic has been shown regularly
since the paper published by Vlachnonikolis and Marriot (1982). Krzanowski
(1983) used a Matusita-Hellinger distance between the populations, Daudin
(1986) used a modified AIC method and Krusinska (1989), Krusinska (1990)
used several methods based on the percentage of misclassification, Hotelling’s
T? and graphical models.

Based on Hellinger distance, Krzanowski (1983) proposed the use of a dis-
tance K to determine the most discriminative variables.

Our asymptotic results allow us to propose stopping rules based on the P-
value of the test of J = 0 or K = 0. These two methods were then com-
pared with a third, based on the Akaike Information Criterion (AIC) de-
scribed by Daudin (1986): classically, AIC penalize the likelihood by the
number of parameters. A direct use of AIC on MANOVA models (described
in Section 1.2.2) will lead to noncomparable log-likelihood. Daudin (1986)
proposed to eliminate the noisy parameters (noted §,,) and to penalize the
log-likelihood by the number of parameters related to the population effect.
It permits to judge whether the log-likelihood and the increase of AIC is only
due to population factor terms in the ANOVA model and is not coming from
noisy parameters.
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Krzanowski (1983) used the distance K to select variables. It should be
noted that K increases when the location model contains more variables
without guaranteeing that this increase is effective: it is therefore necessary
to discount any slight increase that may be caused by chance. We propose to
include a new discriminant variable or a new term in the location model if it
increases the evidence that Hy (K = 0) is false as measured by the P-value
of the test of the null hypothesis, using the asymptotic distribution of K.

It would be interesting to test whether the increase of K due to a new term
in the model is positive. Unfortunately when K is positive (Hy false) the
asymptotic distribution of the increase in K due to a new term is not easily
tractable under the hypothesis that the new parameter is null.

An alternative criterion is an Akaike-like one: K—AIC = 4”17"221%—2(%1—8).

ni+n
According to this method, the best model is that which maximizes K — AIC.
It is also possible to use J with the same methods: we can use the P-value
of the chi-square test of J = 0 or alternatively J — AIC = 22 J — 2(r + )

ni+nz

Based on simulations, Daudin and Bar-Hen (1999) showed that all three
competing methods (two distances and Daudin-AIC ) gave good overall per-
formances (nearly 85% correct selection). The K-method has weak power
with discrete variables when sample sizes are small but is a good choice
when a simple model is requested. The J-method possesses an interesting
decomposition property of J = J; + J between the discrete and continuous
variables. The K-AIC and J-AIC methods select models that have more
parameters than the P-value methods. For distance, the K-AIC method
may be used with small samples, but the J-AIC method is not interesting
for it increases the overparametrization of the J — P method. The Daudin-
AIC method gives good overall performance with a known tendency toward
overparametrization.

1.4 Reject Option

1.4.1 Distributional Result

Since the aim is to test the atypicality of X, we have to derive the distribution
of the estimate of the divergence J between X and m; under the hypothesis
J(X,m;) > 0. We don’t make assumptions about the distribution of the
populations but the same regularity conditions as before are assumed. Bar-
Hen and Daudin (1997) and Bar-Hen (2001) considered the reject option for
the case of normal populations.
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PROPOSITION 1.5 Under Hy : J >0, ny — 00, ng — 00, Z—i —u >0

Vi Fna(J - J) £ N, V)

with

(1.6)

where 1(0;) represents the Fisher information matriz based on 0.

The proof can be found in Bar-Hen (1996).

Remark : From this proposition one may construct confidence intervals for
J.

COROLLARY 1.3 Let J; be the divergence between X andm; (i =1,...,n).
Let assume that the parameters of each population are estimated with inde-
pendent samples. Let n; be the sample size of the sample coming from m; and
ng the sample size of the sample coming from X.

If X is not coming from any m;, then , asymptotically, the joint probability
distribution function of /i + ng(J;—J;) is a multivariate normal probability
distribution function.

Proof: Every /n; + nw(jz —J;) is distributed as a normal probability distri-
bution function. Therefore it has to be proved that every linear combination
of the \/n; + n, (JAZ — J;) is also distributed as a normal probability distribu-
tion function.

Zai\/ n; + nz(jl - Ji) (17)

. 0J; : 0J;
~ . . PRp— . T v J— T v
~ % a;/n; +ng {(92 6:) 20, + (0, — 6,) 3‘%}
= E ai\/ni—l—nw(éw —GJ,)Tg;z
+ A;\/ My —+ nx(éz — oz)TaJZ (18)
Zi 00;

Since the samples used to estimate the parameter of the populations are
independent, asymptotically, (1.8) corresponds to a weighted sum of inde-
pendent normal probability distribution functions. Then (1.8) is distributed
as a normal probability distribution function (Rao, 1973).
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The asymptotic mean and variance of /n; + nz(jl —J;) had been obtained in
the proposition 1.5. To characterize the joint probability distribution function
J;, we have to compute the covariance between the divergence.

COROLLARY 1.4 Let my,...,m, be m distinct populations. Let assume
that the distribution of the populations has the previous regularity conditions.
Assume that 64, . .. ,ém are estimated with independent samples of size
N1, ..., Ny respectively. Let JAij be the estimator of the divergence between
the population m; and m; (4,5 =1,...,m) then if
ng — 00, Nj — 00, N; — OO, &—>u>0, %—w)>0:
1 (3

Cov (\/nj + nl(j” — Jij), Vg + nk(jlk — Jj ))

- v () e ()

where 1(0;) represent the Fisher information matriz based on 6;

and
Cov (W(.ﬁj — Jij)s Vi + (e — Jlk)) =0
Vit ki#lLjFkj#]
Proof:
COV{«/TL]' + m(j” — Jij), Vg, + nk(jzk - Jzk)} ~
- 0Ji; A 8\
Cov g {(ai —0) g, 6= 6)) 69;}
V1N + Nk (él — Qz)Tank + (ék - ak)Tajlj
00; 00,
g\ 0 Jix
= Vn +nk\/nj + n; ( 89;) Var(6; — 0;) ( 20, >
T
_ (n; + nk)gnj +n;) 0Ji; 1_1(92‘) 0Jix
n; 00; 00;
Moreover

Cov {\/m5 F (i = Jig) v/ F i — ) } = 0
Vit kit L] # kA
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because the estimates of J;; and Jj, are independent.

1.4.2 Derivation of the Preliminary Test

Suppose that X iscoming from any of the predefined population 7;. In this
case, the estimator of the divergence between X and =; is asymptotically
distributed as a normal probability distribution function. If there are n pre-
defined populations, we obtain n estimates of the divergence and each of them
is distributed as a normal probability distribution function. Since the obser-
vations coming from X are used in the computation of the estimate of each
of the divergences, the resulting normal probability distribution functions are
not independent.

For a given level of confidence, X will be considered as atypical if the hy-
pothesis that the smallest divergence between X and 7; is greater than zero
is not rejected.

To test this hypothesis we have to obtain the probability distribution function
of the minimum of correlated normal probability distribution functions.

The following proposition is an extension of the result of Dunnett and Sobel
(1955)

PROPOSITION 1.6 Let Z1,...,Z, be N(u;,02) random variable such
that Cov(Z;, Z;) = bib; Vi # j (i,j=1,...,n) and 67 —b? > 0Vi=1,...,n.
Then:

A7 <) =1 [ TLP0G 20 baote)ia

when
X; ~ N(ui,0? —b?) independent Vi=1,...,n

Proof: Let Xy, X1,...,X, be n+ 1 independent normal probability distri-
bution functions such that

X~ N(0,1) and X; ~ N(pi, 07 —b7)
Let
Zi=bXo+X; i=1,...,n
It is easy to see that:
Cov(Z;,Z;) = bib;
Var(Z;) = o?
E(Z) =
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Thus:

P(rln>1{1 Z; < )

since X is independent of X;

P(min Z; < @)
i>1

19
1 —P(min Z; > u)

i>1
1-P(("(Z = w))

i=1
1P{ﬂ(biX0+Xi za)}

1=1
1-P([) X > u— b Xo)

=1
1—/P(ﬂXi > i — biz|Xo = x) x

=1

o(x)dx

1— /HP(XZ- > @ — byx)p(2)dg1.9)

i=1

For the derivation of the preliminary test, we will also need the following

proposition.

PROPOSITION 1.7 H(u) = [[], P(X; > u — biz)p(z)dz is a mono-

tone function of

Proof:

I
—
—
=
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i i

8H(1_l,) " 1 L bi1'+ﬂ()ifﬂ
ot :Z : /,H (I)( 22 )X
J

b + proj — U
2 2
\/ 07 —bj

Therefore H(“ > 0. So H(@) is a monotone function of 4.

p(z)dz

Various approximations of the integral (1.9) had been proposed but many
mathematical packages allow this kind of computation in reasonable time.

Decision Rule for the Preliminary Test

Let m,..., T, be m populations and let X be an unclassified observation.
The regularity conditions are assumed. The parameters 0; (i = 1,...,m) are
estimated with independent samples of size n; respectively. The parameter
0, of X is estimated with a sample of size n,. Let J; be the estimator of Ji,
the divergence between X and ;.

Under the hypothesis that X is coming from any of the predefined population
m;, all the J; are positive and, asymptotically, the joint probability distribu-
tion function of /n; + n$(j2 — J;) is a multidimensional centered normal
probability distribution function with a variance covariance matrix V = (v;;)
(V is defined in equation (1.6) and in the corollary 1.4).

A decision rule should permit to choose between:

Hy : Fisuch that J; < Jj
H1 ) 5 Ji > JiO

This decision rule will be like:

min J; <a  then Hy
The a > 0 of this decision rule has to be such that, if J; = J;o with J;o known
and different from zero then:

P(wrong decision of Hy)=0 0 given
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It means that in this decision rule, the type III error is controlled. Therefore
the test controls the risk of not detecting that X is not coming from one of
the predefined population.

Since zero is a boundary of the parameter space J;p cannot be null but for
many practical purposes this limitation is not so strong. For example, in
taxonomy, a variety will be considered as a new variety if this new variety is
enough far from the known ones. Therefore the value of J;y has to be fixed
by the user.

The joint probability distribution function of J; is asymptotically a normal
probability distribution function. Let consider that the sample sizes are large
enough to allow this approximation. In this case:

J=(J1,...,Jn) ~ Nu(J,%)

with ¥ = (0;;) and
YA aJ; YA aJ;
ou = ””(a&i) ! (ei)(aai)ﬂ””(aam) ! w”(a%)
YA d.J;
o= an) oo (G2)

Then @ will be determined by:

1- /HP(Xi >u—bx)p(x)de =0 B given
i=1

where f(z) is the density of a reduced and centered normal probability dis-
tribution function,

Y AN I\ | . o
X, ~N {Jio,ni (3@) I77(6y) (8&)} independent Vi=1,...,n

and

aJ; T .

when the value of Jr;o have been fixed, it is possible to determine « such that
the probability of a wrong choice of Hy is equal to 8. The proposition 1.7
ensures the uniqueness of . The decision rule is based on the comparison
between o and the minimum of J;.
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1.5 Example

We have used the kangaroos data set from Andrews et al. (Andrews and
Hertzberg, 1985). The data are available at

http://1lib.stat.cnu.edu/datasets/Andrews/. Three populations of kan-
garoos must be classified using one discrete variable (sex) and eighteen con-
tinuous skull measurements. 148 observations have known labels, and three
are unknown. The sample is well balanced as it can be seen from Table 1.2.
Therefore, the sex cannot be useful for classification by its own. However, it

Table 1.2: Contingency table of sex and populations

population | males females
1 25 25
2 23 25
3 25 25

may help to discriminate if it is combined with the skull measurements.

1.5.1 Location Model

The multinomial vector Z contains 2 states (male, female), and the contin-
uous variables are analyzed using an ANOVA model with two factors (sex
and population) with interaction. The selection procedure has been made
using DAIC. The results are given in Table 1.3. After step 6 no variable can
be suppressed. At each step, the possibility of elimination of the interaction
between sex and population in the MANOVA model is tested and rejected.
For example, if we suppress at the last step the interaction sex*population,
the DAIC decreases from 253.7 to 245.34. This indicates that the sex is useful
for discriminating between the populations.

The posterior probabilities have been computed using the selected model
and the classification performance obtained by crossvalidation is given in Ta-
ble 1.4. The overall estimated rate of missclassification is equal to 16.9%.
The posterior probabilities computed for the unlabelled kangaroos are given
in Table 1.5 and the generalized squared Mahalanobis distances in Table 1.6.

It is interesting to check if the third unlabelled kangaroo really pertains to
one of the three group. Actually it seems to be far from the nearest popula-
tion. It is possible to test this hypothesis using the asymptotic distribution
of the Kullback-Liebler distance.
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Table 1.3: Result of the selection procedure

step model DAIC
1 complete model (all continuous variables  229.89
and interaction sex*population)
2 variable 4 suppressed 235.66
3 variable 16 suppressed 240.83
4 variable 7 suppressed 245.49
5 variable 11 suppressed 249.97
6 variable 14 suppressed 253.17

Q xcsBackwardDAICSelection.xpl

Table 1.4: Classification performance of the location model

true population | classified in 1 classified in 2 classified in 3  total
1 41 8 1 50

2 11 35 2 48

3 1 2 47 50

total 53 45 50 148

Q XCSCrossValidation.xpl

Under the hypothesis Hj that the third unlabelled kangaroo pertains to pop-

ulation i, "5 J(z,m;) (where z stands for one observation and m; for pop-
ulation ¢) is distributed as a chisquare with 26 degrees of freedom. The
number of degrees of freedom is the number of parameters useful for discrim-
inating purpose, with 13 continuous variables, the factor population and the
interaction sex*population. Using the distances of Table 1.6, the p—value as-
sociated with this test for each population are respectively 0.00025 0.000063
and 0.0010. Therefore there is a strong suspicion that the third unlabelled
kangaroo does not pertain to any of the three populations. Note that no
correction for multiple testing is necessary for an observation cannot pertain
simultaneously to two populations. Therefore the null hypothesis is true at
most only one time.

The reject option analysis give a similar conclusion (result not shown).
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Table 1.5: Posterior probabilities for the unlabelled kangaroos

kangaroo | population 1 population 2 population 3
149 0.929 0.070 0.001
150 0.000 0.000 1
151 0.086 0.009 0.905

Q XCSPosteriorProbabilities.xpl

Table 1.6: Generalized Mahalanobis Distances for the unlabelled kangaroos

kangaroo | population 1 population 2 population 3
149 28.7 33.8 42.0
150 33.0 29.7 10.9
151 58.7 63.1 54.0

Q XCSDistances.xpl

1.5.2 Comparison with the Linear Discriminant Analysis

The extended Linear Discriminant Analysis of Vlachonikolis and Marriot
(Vlachnonikolis and Marriot, 1982) has been applied on this data set. How-
ever, as a result of the selection procedure, no interaction between sex and
any continuous variable has been introduced, so that the method resolves
to a simple Linear Discriminant Analysis without the sex contribution. The
descendant selection procedure eliminated the following variables : 1, 4, 7,
14 and 17. The performance of the classification rule,estimated by cross-
validation, is given in Table 1.7. The overall misclassification rate is 19,7%,
which is 2.8 points more than the location model. The posterior probabilities
of the unlabelled kangaroos are similar to the results given by the location
model. However the strength of evidence that kangaroo 151 pertains to the
population 3 is greater from LDA than from the location model results.

1.5.3 Conclusion

In summary, the location model takes into account the importance of the
discrete variable to discriminate between the populations. On the opposite,
the Extended Linear Discriminant Analysis cannot catch its discriminating
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Table 1.7: Classification performance of the Linear Discriminant Analysis

true population | classified in 1 classified in 2 classified in 3  total
1 38 11 1 50
2 11 35 2 48
3 1 3 46 50

total 50 49 49 148

Table 1.8: Posterior probabilities for the unlabelled kangaroos using LDA

kangaroo | population 1 population 2 population 3
149 0.882 0.117 0.001
150 0.001 0.001 0.998
151 0.000 0.000 1

power, which in turn lead to a lower performance. This example indicates
that the location model is a better choice, but this point should be well
assessed by other similar studies. The possibility (given by the reject option)
of testing that an observation does not pertain to any population is often very
useful. The Xplore routine given in the annexes should help the researchers
to use it. It contains a routine for computing the parameters of the model,
the posterior probabilities and the distances between the populations, one for
the classification of training or tests samples and a routine for the selection of
variables. These routines are suited to the kangaroo’s example but it is not
difficult to extend them to any data set. The only difficult task is to include
the loglinear model in the actual routines.
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2 Longitudinal Data Analysis with
Linear Regression

Jorg Breitung, Rémy Slama and Axel Werwatz

2.1 Introduction

It has become common in economics and in epidemiology to make studies in
which subjects are followed over time (longitudinal data) or the observations
are structured into groups sharing common unmeasured characteristics (hi-
erarchical data). These studies may be more informative than simple cross-
sectional data, but they need an appropriate statistical modeling, since the
"classical’ regression models of the GLM family Fahrmeir and Tutz (1994)
assume statistical independence between the data, which is not the case when
the data are grouped or when some subjects contribute for two or more ob-
servations.

Hierarchical regression models allow to analyze such surveys. Their main
difference with classical regression models consist in the introduction of a
group specific variable that is constant within each group, but differs be-
tween groups. This variable can be either a fixed-effect (classical) variable, or
a random effect variable. From a practical point of view, the fixed or random-
effect variable may be regarded as allowing to a certain extent to take into
account unobserved characteristics (genetic, behavioral, ...) shared by the
observations belonging to a given group. From a statistical point a view, the
introduction of the group-level variable ’absorbs’ the correlation between the
different observations of a given group, and allow the residuals of the model
to remain uncorrelated.

We will present here the fixed- and random-effect models in the case of linear
regression. A particular attention will be given to the case of unbalanced
longitudinal data, that is studies in which the number of observations per
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group is not the same for all groups. This is an important issue in that
the implementation of models adapted to such data needs some adaptation
compared to the balanced case and since the elimination of the groups with
only one observation could yield selection biases. The models will be applied
to an epidemiological study about reproductive health, where women were
asked to describe the birth of weight of all their children born in a given
calendar period.

EXAMPLE 2.1 We want to describe the influence of tobacco consumption
by the woman during her pregnancy on the birth weight of her baby. We con-
ducted a study among a cross-sectional sample of N = 1,037 women living
in 2 French areas and asked them to describe retrospectively all their preg-
nancies leading to a livebirth during the 15 years before interview, and, for
each baby, to indicate the number of cigarettes smoked during the first term
of pregnancy (exposure, noted x).

The influence of cigarette exposure could be studied by linear regression on
birth weight (dependent variable, noted y). Given the amount of information
lying in the other pregnancies and the cost of data collection, it is tempting
to try to make use of all the available information. Using all the pregnancies
(NT, where T is the mean number of pregnancies per woman) in a linear
regression model may not be appropriate, since the estimation of the linear
regression model

yj=p+x, B+u;, j=1,... NT (2.1)

by the ordinary least squares (OLS) method makes the assumption that the
residuals u; are independent random variables. Indeed, there may be corre-
lation between the birth weights of the children of a given woman, since the
corresponding pregnancies may have been influenced by the genetic character-
istics of the woman and some occupational or behavioral exposures remaining
constant over the woman’s reproductive life.

A possible way to cope with this correlation is to use hierarchical modelling.
The 2-level structure of the data (woman or group level, and pregnancy or
observation level) must be made explicit in the model. If we index by i the
woman and ¢ the pregnancies of a given woman, then a hierarchical linear
regression model for our data can be written:

yie =p+aif+a;tuy, i=1,...,N t=1,...,T; (2.2)
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where y;; is the birth weight of the pregnancy number ¢ of woman i. The
number of pregnancies described by the woman 7 is a value T; between 1 and
say 12 and can vary between women. Of course, x;;, the mean number of
cigarettes smoked daily, can vary between women and between the various
pregnancies of a woman. The main difference with (2.1) is that the model
now contains the a; variables (i = 1,..., N) defined at the group (or woman)
level.

This technique allows to obtain the output shown in Table 2.1

Table 2.1: Tobacco consumption by the woman during the first term of

pregnancy

Parameters Estimate SE  t-value p-value
Tobacco -9.8389  2.988  -3.292 0.001
Sex(Girl=1) -157.22 18.18  -8.650 0.000
(...)Constant 3258.1 83.48  39.027 0.000
St.dev of a(i): 330.16 St.dev of e(i,t): 314.72

R2(without): 0.2426

Q panrand.xpl

The model was adjusted for other variables, like duration of pregnancy,
mother’s alcohol consumption, sex of the baby, which are not shown in this
output. The random-effect model estimates that, on average, tobacco con-
sumption by the woman during the first term of pregnancy is associated with
a decrease by 9.8 grams (95% confidence interval: [—15.7; —4.0]) of the birth
weight of the baby per cigarette smoked daily.

Definitions and Notations

The cross-section unit (e.g. individual, household, hospital, cluster etc.) will
be denoted group and be indexed by i, whereas t indexes the different obser-
vations of the group 7. The ¢ index can correspond to time, if a subject is
followed and observed at several occasions like in a cohort study, but it may
also be a mere identifying variable, for instance in the case of therapeutical
trial about a new drug, realized in several hospitals. In this case, it may be
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appropriate to use a hierarchical model, with 7 standing for the hospital, and
t indexing each subject within the hospital.

We will use indifferently the terms of panel or preferably longitudinal data to
design data sets with a hierarchical structure, whatever the sampling method
(cross-sectional or cohort surveys) although the term of panel study is some-
times used exclusively in the case of cohort studies. The data set is said un-
balanced when the number of observations 7T; is not the same for all groups,
i =1,2,..., N, and balanced when T; = T for all i. The explained quan-
titative variable will be denoted y;, which is a vector of dimension 7;. The
average number of observations is denoted as T = N~! Zfil T;.

In the first section of this chapter, we will present the theoretical bases of the
fixed and random effect models, and give explicit formulas for the parameters.
We turn to the practical implementation amd in the last section discuss the
tobacco consumption application in more detail.

2.2 Theoretical Aspects

2.2.1 The Fixed-effect Model
The Model

For individual (or groups) i at time ¢ we have

vie =i +x,8+uy, i=1,...,N, t=1,....T (2.3)

This model is also called the analysis of covariance model. 1t is a fized effects
model in the sense that the individual specific intercepts «; are assumed
to be non-stochastic. The vector of explanatory variables x; is assumed
independent of the errors u;; for all 7 and ¢. The choice of the fixed-effect
model (as opposed to a random effect model) implies that statistical inference
is conditional on the individual effects a.
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Writing (2.3) for each observation gives

Y ].T1 0 0 (6751 .’Dir U1
Yy 0 1rp, 0 o xq Us
= . + B+
Yn 0 0 1TN an w; unN
—_———  —— —_——
NTx1 NTxN Nx1 NTxk NTx1
(2.4)

or, in matrix notation,

y=Dya+ X0 +u. (2.5)

Parameter Estimation

The matrix Dy can be seen as a matrix of N dummy variables. Therefore,
the least-squares estimation of (2.3) is often called ”least-squares dummy-
variables estimator” Hsiao (1986). The coefficient estimates results as:

Bwe = (XTWHX)_1 X W,y (2.6)

& = (DYDn)'DN(y—XBye) (2.7)
Tt ET: (1t — 21,Bwe)

_ - (2.8)

Tﬁl t;(yNt - wj—l\—rt/BWG)

where
W, =Iyr — Dn(D\Dn)'DY

transforms the regressors to the deviation-from-the-sample-means form. Ac-
cordingly, Sy can be written as the “Within-Group” (WGQG) estimator:

N

R N T . -1 T
Bwa = {Z Z(wzt — ;) (@i — ;) } {Z Z(ﬂht — ;) (Yir — gz)} ;

i=1 t=1 i=1 t=1
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where the individual means are defined as
1 & 1 &
gi:i;yita @izi;fﬂit.

To estimate the average of the individual effects & = N1 Zfil o, the indi-
vidual means can be corrected by the sample means
y=(NT)™! vazl Eil yi+ and & is defined accordingly. The least-squares
estimates of 4 and & is obtained from the equation

Yie — i ty=a+ (i — T + ii)Tﬁ + Uy (2.10)

It is important to notice, from (2.9), that cross section units with only one
observation do not contribute to the estimation B of the parameters associ-
ated to the explaining variables x; that is, the same estimate results if these
cross section units would be excluded from the data set. The groups with
T; = 1 only play a role in the estimation of the mean intercept.

Adequation of the Model to the Data

In complement to the parameter estimation, the degree of explanation of the
model and the variance of the error terms can be estimated. It is also possible
to test if the introduction of a group-specific variable makes sense with the
data used, by means of a F-statistic test presented below.

There are two different possibilities to compute the degree of explanation R?.
First, one may be interested in the fraction of the variance that is explained
by the explanatory variables comprised in z;;. In this case R? is computed
as the squared correlation between y;; and @, By ¢. On the other hand, one
may be interested to assess the goodness of fit when the set of regressors is
enhanced by the set of individual specific dummy variables. Accordingly, the
R? is computed as the squared correlation between y;; and w;';ﬁWG + a;.

In practical applications the individual specific constants may have similar
size so that it is preferable to specify the model with the same constant for all
groups. This assumption can be tested with an F' statistic for the hypothesis
] = Qg =+ =QN.

In order to assess the importance of the individual specific effects, their “vari-
ances” are estimated. Literally, it does not make much sense to compute a
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variance of «; if we assume that these constants are deterministic. Never-
theless, the variance of a; is a measure of the variability of the individual
effect and can be compared to the variance of the error u;;. The formula for
estimating the variance of the fixed effects is similar to the computation of
variances in the random-effects model. However, the residuals are computed
using the within-group estimator By, Amemiya (1981).

Options for the Fixed-effects Model

a) Robust standard errors
Arelano and Bond (1987) suggests an estimator of the standard errors for
By ¢ that is robust to heteroskedastic and autocorrelated errors w;;:

1 -1

N N
wwM;<ZXX><ZX%ﬁ?MZETJ,
i=1

i=1
where
x) -z yin — Ui — (o — &) Byg
T AT — —\TA
~ Lig — I N Yiz — Ui — (Tiz2 — wi)Tﬁwc
Xi = . and u; = .
T AT _ _NTD
LT,r — I vir — ¥i — (TiT — mi)TBWG

It should be noted that the estimation of this covariance matrix requires two
steps. In the first step the within-group estimator is used to estimate 3. In
the second step, the covariance matrix is computed by using the residuals of
the fixed-effects model. Therefore, the computation time is roughly doubled.

b) Test for autocorrelation

The test for autocorrelation tests the null hypothesis: Ho : E(ujiu;—1) = 0.
Since the residuals of the estimated fixed-effect model are correlated, a test
for autocorrelation has to adjust for a correlation that is due to the estimated
individual effect. Define

~ T >
Uig—1 = Yig—1 — i1 Bwea — E Yis — ;53

It is not difficult to verify that under the null hypothesis

B{ (yu — @8 Bwe)si1 ) = —02/(T - 1),
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N T =R
5> 3 {wie - @l Buwe)in1/52 +1/(T - 1)}

ﬁ: N T
JE S

Under the null hypothesis, the limiting distribution has a standard normal
limiting distribution.

c) Estimates of the individual effects
The mean intercept is estimated by:

~ — AT_
p=y—p3 . (2.11)

It is also possible to estimate the group variables «;:

ai:yi—ﬁ—,ﬁ :f:i. (2.12)

2.2.2 The Random Effects Model

The Model

For the random effects model it is assumed that the individual specific inter-
cept «; in the model

yi=x, B+ +uy, i=1,...,N, t=1,...,T (2.13)

is a random variable with E(a;) = 0 and E(a?) = o02. Furthermore we

assume that
E(ayui) =0 for all 1, ¢,
E(oizi) =0 for all i, .

In general the vector x;; includes a constant term.

The composed error term is written as v;; = a; + u;; and the model assump-
tions imply that the vector v; = (v, ... ,v;7) " has the covariance matrix

E(vw, )= .
The model (2.13) can be efficiently estimated by using the GLS estimator

N L/ N
Bars = (Z XiT‘I’le) <Z XiT‘I’l’yi> ; (2.14)
1=1

=1
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where X; = (xj1,...,zir)" and y; = (yi1,...,vir) . This estimator is
equivalent to a least-squares estimator of the transformed model

Yir — V% = (zi —0T;)  Bten (2.15)
where

Ry - (2.16)
o2+ To2 '

In general, the variances 02 and o2 are unknown and must be replaced by

estimates. To this end several different estimators were suggested Baltagi
(1995). The panrand quantlet employs the estimator suggested by Swamy
and Arora (1972), which is based on two different regressions. First, the
model is estimated by using the within-group estimator. The estimated error
variance (corrected by the degrees of freedom) is an unbiased estimator for
o2. The second regression is based on the individual means of the data

and e;r = vy — Y;.

G = B+ 0; . (2.17)

Since E(9?) = 02 + 02 /T, an estimator for o2 is obtained from the estimated
residual variance of (2.17). Let 67 denote the estimated residual variance of
the between-group regression (2.17), which results from dividing the residual
sum of squares by (N — K — 1). The estimated variance of the individual
effect results as 62 = (61 — 62)/T. A serious practical problem is that the

«
resulting estimator of 42 may become negative. In this case 62 is set to zero.

2.3 Computing Fixed and Random-effect Models

2.3.1 Data Preparation

Suppose we want to regress a quantitative variable y over explanatory vari-
ables noted x. The variable indexing the group will be noted id. Table 2.3.1
shows how the data set should look like in the case of two = variables:

If you have a balanced data set (same number of observations per group)
sorted by group, then the ¢d variable is not necessary. You will have to give
the number of observations per subject instead of the id vector, that XploRe
will then build for you.
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Table 2.2: Raw data structure for longitudinal data analysis

id Y T1 T2
1 3409 38 0
1 3755 41 1
2 1900 32 1
3 4200 41 1
3 4050 40 O
3 4300 41 1

100 3000 39 O

100 2850 39 1

2.3.2 Fixed and Random-effect Linear Regression

The fixed-effect linear regression model can be estimated using the panfix

quantlet. Q panfix.xpl

The random-effect linear regression model can be estimated using the panrand

quantlet. Q panrand.xpl

2.3.3 Options for panfix

The options must be defined by the panopt quantlet according to the syntax:
opt=panopt (optname,optvalue)

where optname is the name of the option, and optvalue the value associated
to the option. The name of the option has to be given as a string. You may
define several options at the same time according to the following syntax:

opt=panopt (optnamel,optvaluel,
optname2,optvalue2,optname3,optvalue3)

The following options can be defined:
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alpha: If equal to 1, asks for the individual effect parameter to be estimated
and stored. The estimation is done assuming that the sum of all alpha
parameters is zero.

autoco: If equal to 1, an autocorrelation test is performed (only if the
number of observations is at least 2 for each group). Default is no test
performed.

ci: If this parameter is set to the value pval, then the confidence intervals
will be given at the level (100-pval)%. By default, no ci are given.

notab: If this parameter is set to 1, then no table of results is displayed.

robust: The robust estimates of variance given in Arelano and Bond
(1987) are used. These should be more valid than the classical variance
estimates in the case of heteroscedasticity. Default is the standard
variance estimates.

xlabel: Label of the explanatory variables, to make the output table more
explicit. This option must be given as a vertical array of the k strings
corresponding to the labels (constant term excluded). Maximum label
length is 11 characters. (k x 1) vector.

For example, if « is a vector of 2 columns containing the independent variables
tobacco and alcohol consumption, you may type:

lab="tobacco"|"alcohol"
opt=panopt ("xlabel",lab)
p=panfix(id,y,x,opt)

In the output table, the parameters associated to the first and second vari-
ables will be labelled by the indicated names. Unspecified options will be set
at their default value, and the order in which the options are given is not
important.

2.3.4 Options for panrand

The options must be defined by the panopt quantlet according to the syntax:

opt=panopt (optname,optvalue)
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where optname is the name of the option, and optvalue the value associated
to the option.

The following options can be defined:

opt.shf: Allows you to see the various steps of the estimation procedure.

opt.xlabel: Label of the explanatory variables, to make the output table
more explicit. This option must be given as a vertical array of the k
strings corresponding to the labels (constant term excluded). Maximum
label length is 11 characters and (k x 1) vector.

2.4 Application

In this section, we illustrate estimations based on real data.The data come
from an epidemiologic study about human reproductive life events. Briefly,
a cross-sectional sample of 1089 women from Bretagne and Normandie were
questioned during spring 2000 about the birth weight of all their children
born between 1985 and 2000. We present here the association between the
birth weight (dependent variable), the gestational length, the age, and the
parity (previous history of livebirth, no/yes) of the mother (independent
variables). There was a total of 1963 births in the study period (1.8 pregnancy
per woman) and the data can be considered as longitudinal data with a
hierarchical structure, the woman being the first level, and the pregnancy
the second level.

The use of fixed or random effect models allows to take into account all the
pregnancies who took place in the study period described by the woman.
In such epidemiological studies about human reproduction, the exclusion of
couples with only one pregnancy may give rise to selection bias, since the
couples with only one pregnancy are more likely than those with two or more
pregnancies to have difficulties in conceiving. Here is a brief description of
the data set:
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Table 2.3: Summary statistics of the tobacco/birth weight data set

Variable Mean Std Dev 5 — 95" percentiles
Birth weight (g) 3409 510 2610-4250
Gestational length (days) 283 11.8 261-294
Mother’s age (years) 27.2 44 20.1-35.1

Proportion of parous women  0.60
Sex of the offspring
(proportion of boys) 0.50

2.4.1 Results

First, we will describe briefly our data Q XCSpanfix01.xpl

The first column of z contains the identified variable, whereas the next
columns contain the dependent variables, and then the independent vari-
ables. If the panel is balanced and sorted by group, the first argument id
can be replaced by a scalar indicating the number of observations per group.
We obtain the following output:

Table 2.4: Statistics of panel data

Minimum Maximum Mean Within Var.%  Std.Error

Variable 1 750 5300 3409 23.8 509.6
Variable 2 -98 21  -5.715 27.56 11.76
Variable 3 14.37 45.71 27.18 26.77 4.366
Variable 4 0 1 0.595 66.82 0.491
Variable 5 0 1 0.5028 45.7 0.5001

Q xcspanfixo1.xpl

The column Within Var.% gives the value of the variance of the residuals of
the withing-group estimator, divided by the overall variance.

We can then estimate a fixed-effect regression model.
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Table 2.5: Estimated fixed-effects model for tobacco/birthweight data

Parameters Estimate SE  t-value p-value
beta[ 1 ] 18.548  1.17 15.8908 0.0000
beta[ 2 | 7.964 461  1.7263 0.0843
beta 3 ] 75.239 2597  2.8970 0.0038
beta[ 4 ] -144.51  21.27  -6.7931 0.0000
Constant 3326.1 115.3 28.8350 0.0000
St.dev of a(i): 321.47 St.dev of e(i,t):318.47
Log-Likelihood: 22627.617 R2(without) : 0.2203
F(no eff.) p-val: 0.0000 R2(with eff) : 0.8272

Q xcspanfix02.xpl

Thus, on average, an increase in 1 day of the duration of pregnancy was
associated with a gain of weight of 18.4 grams (betal[1]), and girls are 145
g lighter than boys at birth (beta[4]), with a 95% confidence interval of
[-186;-103] g. Moreover, women who already had a child have a tendency
to give birth to heavier babies (77 g on average). There is a non-significant
tendency to an increase in birth weight with mother’s age.

The R? value of 0.22 indicates that only a small fraction of the variability
of the data is explained by the model, and that other variables should be
included (for instance height and weight of the mother before pregnancy, in-
formation on health,...).

In this case, there are some groups with only one observation (cf. output
above); we cannot therefore perform an autocorrelation-test, nor obtain ro-
bust confidence-intervals estimates. In the case of a data set with all groups

having at least 2 observations, this can be obtained by Q
XCSpanfix03.xpl

For the data, the a-priori choice between the fixed-effect and the random-
effect model would be the random-effect model, because the included women
were randomly selected from two French rural areas, and we wish to infer the
model estimates on the women who conceived between 1985 and 2000 in the
whole area.

We obtain the random-effect model estimates in Table 2.6.
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Table 2.6: Estimated random-effects model for tobacco/birthweight data

Parameters Estimate SE t-value p-value 95% CI
beta[ 1 ] 18.927 0.8286  22.844 0.000 17.3  20.55
beta[ 2 | 4.5912 2.638 1.740 0.082 -0.58 9.76
beta[ 3 ] 88.389 18.89 4.678 0.000 51.36 125.4
beta[ 4 ] -152.53 1746  -8.735 0.000 -186.8 -118.3
Constant 3413.3 68.94  49.509 0.000 3278.0 3548.0
St.dev of a(i): 337.9 St.dev of e(i,t): 312.19

R2(without): 0.2206

Q XCSpanrand04.xpl

On the whole, these estimates are consistent with those of the fixed-effect
model. You can notice that for variable [2] (mother’s age), the estimates
from the two models differ (7.8 with a standard error of 4.6 for the fixed-effect
model, and 4.6 with a standard error of 2.6 for the random effect model). In
such a case, where the number of observations is small for many units, it is
not rare that both models yield different parameter estimates.
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3 A Kernel Method Used for the
Analysis of Replicated
Micro-array Experiments

Ali Gannoun, Beno Liquetit, Jérome Saracco and Wolfgang Urfer

Microarrays are part of a new class of biotechnologies which allow the moni-
toring of expression levels of thousands of genes simultaneously. In microar-
ray data analysis, the comparison of gene expression profiles with respect
to different conditions and the selection of biologically interesting genes are
crucial tasks. Multivariate statistical methods have been applied to analyze
these large data sets. To identify genes with altered expression under two
experimental conditions, we describe in this chapter a new nonparametric
statistical approach. Specifically, we propose estimating the distributions of
a t-type statistic and its null statistic, using kernel methods. A comparison of
these two distributions by means of a likelihood ratio test can identify genes
with significantly changed expressions. A method for the calculation of the
cut-off point and the acceptance region is also derived. This methodology is
applied to a leukemia data set containing expression levels of 7129 genes. The
corresponding results are compared to the traditional t-test and the normal
mixture model.

3.1 Introduction

Gene expression regulates the production of protein, the ultimate expression
of the genetic information, which in turn governs many cellular processes
in biological systems. The knowledge of gene expression has applications
ranging from basic research on the mechanism of protein production diag-
nosing, staging, treating and preventing of diseases. Microarray technologies
provide a way of analysing the RNA expression levels of thousands of genes
simultaneously; see for example Brown and Botstein (1999), Lander (1999),
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Quackenbush (2001). A common objective in such analyses is to determine
which genes are differentially expressed under two experimental conditions,
which may refer to samples drawn from two types of tissues, tumors or cell
lines, or at two points of time during important biological processes. Also, It
has been noted that data based on a single array are highly noisy and may
not be reliable and efficient, see for instance Chen, Dougherty and Bittner
(1997). One reason is that the statistical variability of the expression levels
for each gene is not taken into account. Moreover, the need for independent
replicates has been recognized, see for example Lee, Kuo, Whitmore and Sklar
(2000), and several methods combining information from several arrays have
been proposed. These methods assign a test score to each of the genes and
then select those that are ‘significant’. In addition, an emerging novel idea,
is that with replicates of microarrays, one can estimate the distribution of
random errors using nonparametric methods. This idea was first suggested
in an empirical Bayesian approch by Efron, Tibshirani, Goss and Chu (2000)
and Efron, Storey and Tibshirani (2001). In one development here, we use
the mixture model method developed by Pan (2002) and Pan, Lin and Le
(2004). However, we replace the mixture of normal distributions by kernel
method to get more flexible and powerful estimates of the two distributions
of the test and null statistics. We then use a likelihood ratio test to determine
genes with differential expression.

This chapter is organized as follows. In Section 3.2, we describe the statistical
model and two existing testing methods, the t-test and the normal mixture
approach. In Section 3.3, we propose a kernel estimation procedure, and we
give a new method to determine the cut-off point and the acceptance region.
This nonparametric approach is illustrated in Section 3.4 using the leukemia
data of Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh,
Downing, Caligiuri, Bloomfield and Lander (1999). The performance of this
method is compared to the normal mixture model approach of Pan, Lin and
Le (2004). Section 3.5 is devoted to the conclusion, some remarks and an
outlook for further activities.

3.2 Statistical Model and Some Existing
Methods

In this section, we present the general statistical model from which we make
the comparative studies. Then, we recall the construction of the t-test
method and the mixture modeling approach.
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3.2.1 The Basic Model

Various models are proposed to summarize multiple measurements of gene
expression. For example, general surveys are given by Thomas, Olson, Tap-
scott and Zhao (2001).

We can consider a generic situation that, for each gene i, i = 1,...,n, we
have expression levels Y1, Yia, ..., Yy, from J; microarrays under condition 1,
possibly treatment, and Y; 7,41, Yis, 2, -, Yis, +7, from Jo microarrays under
condition 2, possibly control. We suppose that J = J; + Jo, and J; and Jo
are even. The expression level can refer to summary measure of relative red
to green channel intensities in a fluorescence-labeled complementary DNA
or cDNA array, a radioactive intensity of a radiolabeled ¢cDNA array, or
summary difference of the perfect match (PM) and mis-match (MM) scores
from an oligonucleotide array, see Li and Wong (2001). We focus on the
following general statistical model:

Y = Bi + Wi + €ij (3.1)
where z; =1for 1 <j < J;and z; =0for J; +1 < j < J; + Jo, and €55 are

independent random errors with mean 0. Hence 3; + u; and 3; are the mean
expression levels of gene ¢ under the two conditions respectively.

Determining whether a gene has differential expression is equivalent to testing
the null hypothesis:

Hy:p; =0 against H;p:u; #0.

To focus on the main issue, we use a = 0.01 as the genome-wide significance
level, and Bonferroni adjustment to deal with multiple comparisons. Other
possibly better adjustment methods for multiple comparisons can be found
in the statistical literature, see for example Dudoit, Yang, Speed and Callow
(2002) and Thomas, Olson, Tapscott and Zhao (2001). Hence the gene-
specific significance level (for a two-sided test) is a* = a/(2n).

In the following, we review briefly two existing methods along this line.

3.2.2 The T-test

Because usually both J; and Js are small, and there is no evidence to support
equal variances as it is mentioned in Thomas, Olson, Tapscott and Zhao
(2001), we only give an overview on the t-test with two independant small
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normal samples with unequal variances. Let 7,;(1), 312(1)’ ?i(g) and s?@) denote
the sample mean and variance sample of expression levels of gene i under the
two conditions. We use a t-type score as test statistic:

Yi-Yie

b
/s 7(1) 7(2)
J1 +

It is approximately ¢-distributed with degree of freedom

(3 /1 + 57 2)/J2)
(521 I (s = 1) + (52, [T (T — 1)
Large absolute t-statistics suggest that the corresponding genes have differ-

ent expression levels. However, the strong normality assumptions may be
violated in practice.

Z; =

d; =

3.2.3 The Mixture Model Approach

The mixture model. Instead of imposing a strong parametric assumptions
on the null distribution of the statistic Z, the idea is to estimate it directly
by a so-called null statistic z such the distribution of z is the same as the
null distribution of Z. The problem with the above t-test is its restrictive
assumptions. Following Pan (2002) and Pan, Lin and Le (2004) the null
statistics is constructed as:

where Yj1y = (Yi1, Yiz, -, Yin ), Yie) = (Yin+1, Yis 42, Yis 4 0,)s wi 18 a
random permutation of a column vector containing J; /2 1’s and —1’s respec-
tively, and v; is a random permutation of a column vector containing Jo/2
1’s and —1’s respectively.

We suppose that Z; and z; are distibuted with density f and fy. If we assume
that the random errors €;; in (3.1) are independent and their distribution is
symmetric about zero, then under Hy, f = fy.

In the absence of strong parametric assumptions, the functions f and fy
are not identifiable, see Efron, Storey and Tibshirani (2001). Lee, Kuo,
Whitmore and Sklar (2000) and Newton, Kendziorski, Richmond, Blattner
and Tsui (2001) considered parametric approaches by assuming Normal or
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Gamma distributions for f and fy respectively. Efron, Tibshirani, Goss and
Chu (2000) avoided such parametric assumptions and considered a nonpara-
metric empirical Bayesian approach.

Pan, Lin and Le (2004) used a finite normal mixture model to estimate
fo (or f): fo(z, Q) = 29, (2, pr, Vi), where (., iy, Vi) denotes the
normal density function with mean p, and variance V,., and the 7,’s are
mixing proportions. The set €1, represents all unknown parameters in a
go-component mixture model: {(m, s, V;): 7 =1,...,g0}. They used the
EMMIX, a stand-alone Fortran program, described in McLachlan and Peel
(1999), to fit such a normal mixture model using the well-known expectation-
maximization (EM) algorithm of Dempster, Laird and Rubin (1977) to obtain
maximum likelihood estimates. The Akaike Information Criterion (AIC) or
the Bayesian Information Criterion (BIC), see for instance Schwarz (1978),
can be used as model selection criterion to determine the number of compo-
nents gop.

The test procedure. As discussed in Efron, Storey and Tibshirani (2001),
for a given Z, if we want to test for the null hypothesis Hy, we can construct
a likelihood ratio test based on the following statistic:

LR(Z) = fo(2)/f(Z). (3-2)

A large value of LR(Z) gives no evidence against Hp, whereas a too small
value of LR(Z) leads to rejecting Hy. For any given genome wide significance
level a, we solve the following equation:

e
= / fo(2)dz (3.3)
LR(z)<c
to obtain a cut-off point ¢ and to construct the corresponding rejection region

for Hy:
{Z: LR(Z) < c}.

REMARK 3.1 With the normal mixture model in Pan, Lin and Le (2004),
it is possible to numerically solve the equation (3.3) using the bisection method,
see Press, Teukolsky, Vetterling and Flannery (1992).

3.3 A Fully Nonparametric Approach

Using z;’s and Z;’s, we will nonparametrically estimate fy and f by a kernel
method and develop a procedure to determine the rejection region from an
approximation of (3.3).
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3.3.1 Kernel Estimation of f;, and f

The construction of a kernel estimator of the density functions f and fy re-
quires a choice of a real (density) function K (called kernel), and bandwidths
h,, and hg,, which are sequences of positive numbers tending to 0 as n tends
to infinity.

From {Z;, i = 1,..,n} and {z;, i = 1,..,n}, f and fy can be estimated
nonparametrically by:

falz) = mllle (*” = ) and  fon(2) = >oK (Zhoj ) .
(3.4)

Well-known theoretical results show that the choice of a reasonable K does
not seriously affect the quality of the estimators (3.4). In order to get
smoother estimation, one can use a kernel K which is bounded, symmet-
ric and satisfying |z| K(z) — 0 as |z] — oo and [2?K(z)dz < oo. On the
contrary the choice of the bandwidths h,, and hg, turns to be crucial for
the accuracy of the estimators (3.4). Some indications about this choice are
given in Bosq and Lecoutre (1987). For example, one can use

1/5 and hOn = 6077.”71/55 (35)

hy, = o,n~
where 7, and 7, denote the empirical standard deviation of the Z;’s and the
z;’s. From a theoretical point of view, this choice minimizes some asymptotic
mean square error, see Deheuvels (1977). In practice, this choice gives an
idea of the amount of smoothing needed for the estimator. For the graphical
aspect of the corresponding estimated density function curve, the user can
choose to increase or decrease the value of the bandwidth in order to obtain
the desired smoothing of the density estimators.

Note that it is well-known that the kernel density estimator does not perform
well on the support edges of the distribution. In the following, we suggest a
method for overcoming edge effect problems, and in doing so, make it possible
to achieve a more efficient estimator of the LR function.

3.3.2 The Reflection Approach in Kernel Estimation

Reflection principles in density estimation have been described and studied
by Schuster (1985), Silverman (1986) and Cline and Hart (1991). Here we
present a slighty different version of the geometric approach for removing the
edge effects proposed by Hall and Wehrly (1991).
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Let 2(1), ..., Z(,) be the initial ordered data from which we will determine the
estimator of the density function, say g. We add 3% artificial observations
in the two tails of the distribution using the following principle.

e In the left tail, the “new” observations are Z(;;1) = x(1)— (l‘(iJ’,l) — x(l))
for i =1,...,[Bn/2], where [m] is the integer part of m.

e In the right tail, the “new” observations are
j(i-&-l) = T(n) + (SC(,,L) — x(n—i)) fori=1,..., [ﬂn/Z]

Finally we estimate g from the overall data set (i.e. from the union of the
original data x; and the pseudo-data &; and ;).

REMARK 3.2 When the number n of observations is large, the adjusted
estimator is very sensitive to the percentage (3 of artificial observations. Gen-
erally, it suffices to take a minute percentage (around 0.5%) to obtain a rea-
sonable estimator.

REMARK 3.3 If there are not enough observations close to the extreme
values x(1y and x(,), we can adapt the same outline described previously, by
replacing x(1y and x(,) by some extreme empirical quantiles, such as the 1st
and 99th centiles of the data.

3.3.3 Implementation of the Nonparametric Method
Here we propose an empirical method to solve (3.3). This method works,
even in Pan’s approach and with any estimator of f and fy.

For the purpose of this paper, the densities f and fy are replaced by their
kernel estimators f, and fq, given in (3.4). We solve the modified equation:

% :A/ fon(2)dz, (3.6)

where ﬁ(z) = fon(2)/ fu(2).

For a fixed value ¢ > 0, let A. = {z: T < ¢} where T'= LR(z). We generate
an ordered grid of N points {Z;, k=1,..., N} covering the support of the

Zys. Let Ty = LR(G), k = 1,...,N; A, = {zk:fk«:, kzl,...,N};
and ATC = {ék : fk >c k= 1,...,]\7}, the complement of EC. We assume
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now that A, is a convex set (that is an interval). Let Z. (1), Zc,(2)s- - - » Ze.(q)

be the ¢ ordered values of ATc Then

foiz ~ [ Jondzm [ foudaz 4 [ fon(2)dz
Joes famtoe= |

- Ze,(a)

~ / e ()de / (o)

21 Ze,(q)

The left hand side integral can be evaluated by classical numerical integration
method (trapezoidal quadrature). Now, the approximate cut-off point is the
value c* of the set {%, 1=0,1,..., N} where N is chosen as large as possible,

such that:
«
— =~ n(2)dz.
- /fo (2)dz
A

From this cut-off point ¢*, we can easily deduce the rejection region which is
given by:
{Z 1 Z < éc*,(l) or Z > 2c*,(q)}~

3.4 Data Analysis

This section is devoted to the application of our proposed method. We de-
scribe the data and present the results on expression level study of genes. We
take o = 1% as the genome-wide significance level. Then, using simulation
study, we check the efficiency of the kernel method against the “true” Normal
Mixture model.

We apply the methods to the leukemia data of Golub, Slonim, Tamayo,
Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield
and Lander (1999). Data have been generated for leukemic myeloid (AML)
and lymphoblastic (ALL) cells taken from different individuals. There are 27
ALL samples and 11 AML samples. In each sample, there are n = 7129 genes
to study. Here our goal is to find genes with differential expression between
ALL and AML.
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3.4.1 Results Obtained with the Normal Mixture Model

Using the normal mixture approach, Pan (2002) proposed the following esti-
mators for the density function fy and f:

fom(2) = 0.479¢(z, —0.746,0.697) + 0.521(z,0.739,0.641) (3.7)
and

Fm(z) = 0.518¢(z, —0.318,1.803) + 0.482¢(z, 0.7781, 4.501), (3.8)

The cut-off point obtained by Pan (2002) is ¢ = 0.0003437. The correspond-
ing rejection region for Hy is {Z : Z < —4.8877 or Z > 4.4019}, which gives
187 genes with significant expression changes.

3.4.2 Results Obtained with the Nonparametric Approach

To estimate nonparametrically f and fy, we used the Gaussian density as
kernel K. For the bandwidths h, and hg,, we first used the formulas given
in (3.5). We obtained the following values: h,, = 0.313 and hg,, = 0.187. The
estimated densities f, and fo, defined respectively in (3.4) are evaluated.
With this choice of bandwidths, the curves seem to be under-smoothed. The
deviations from the smooth curves are due to background noises which are
not informative. Smoothest curves can be obtained by broadening the band-
widths. This is done by multiplying them by a factor of 1.8 which seems to be
the “optimal value” with regard to visual introspection. The corresponding
bandwidths are b}, = 0.563 and hf,, = 0.337. Figure 3.1 and 3.2 present the
histograms of the z;’s and the Z;’s, and the estimated densities fo,, and f,.
For comparison, the density functions fo,, and f,, given in (3.7) and (3.8))
are also plotted in Figure 3.1 and 3.2. The corresponding LR function is
shown in Figure 3.3.

To solve the equation (3.3), we use the approximation presented in (3.6) and
the implementation procedure described in Section 3.3.3. We get the cut-
off point ¢ = 0.00070, yielding a rejection region of {Z : Z < —4.248 or
Z > 4.327} for Hy. It gives 220 genes with significant expression changes
compared to the 187 obtained with the normal mixture model of Pan (2002).
Note that the common rejection region between kernel and normal mixture
approaches is {Z : Z < —4.887 or Z > 4.402}, and therefore the common
number of genes with significant expression changes is 187. With the non-
parametric approach, we obtain 33 differentially expressed genes not detected
by Pan’s approach.
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(a) Estimation of the zi’s density
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Figure 3.1: Estimation of the z;’s and Z;’s densities (blue dashed line: Pan
estimators, red solid line: kernel estimators).

Q XCSGANLSUprog.xpl

(b) Estimation of the Zi’s density
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Figure 3.2: Estimation of the z;’s and Z;’s densities (blue dashed line: Pan
estimators, red solid line: kernel estimators).

Q XCSGANLSUprog.xpl
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(c) Estimation of the LR function
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Figure 3.3: Estimation of the LR function.
Q XCSGANLSUprog.xpl

As we pointed out in Section 3.3, the kernel estimation method may be not
very efficient in edges of the distribution. It may be one of the reasons why
greater numbers of differentially expressed genes were detected by this non-
parametric method compared to the normal mixture model. To improve the
kernel estimator, we used the reflection method described in Section 3.3.2.
The percentage [ varies between 0% and 0.25%. Results are summarized
in Table 3.1. For instance, with 8 = 0.05%, our kernel approach find 178
genes with significant expression changes. The number of differentially ex-
pressed genes in common with the normal mixture model of Pan is 157. Then
21 differentially expressed genes have not been detected by Pan’s approach;
similarly 30 differentially expressed genes have been detected by the normal
mixture model, but not with the nonparametric method.

The rejection region and the corresponding number of differentially expressed
genes decrease as [ increases. This phenomenom can be easily explained by
the fact that the rejection techniques may artificially inflate the tail of the
distribution if § is too large. In all cases, we observed that there were some
differentially expressed genes detected by the proposed kernel approach which
were not found by the normal mixture model of Pan (2002), and vice versa.
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Table 3.1: Results obtained with the kernel method. (In the third column,
the number in paranthesis is the number of differentially expressed
genes in common with the normal mixture model of Pan.)

16} Rejection region of Hy Number of differentially
expressed genes
0% | {Z:7Z < —4.248 or Z > 4.327} 220 (187)
0.05% | {Z:Z < —4.327 or Z > 4.645} 178 (157)
0.10% | {Z:Z < —4.327 or Z > 4.724} 164 (143)
0.15% | {Z: Z < —4.407 or Z > 4.883} 131 (115)
0.20% | {Z:Z < —4.486 or Z > 4.962} 112 (102)
0.25% | {Z: Z < —4.560 or Z > 4.962} 111 (102)

3.4.3 A Simulation Study

The aim of the simulation study is to validate the nonparametric computa-
tional approach to find the rejection region by solving the equation (3.3).

We consider the normal mixture model defined in (3.7) and (3.8) as the “true”
model for fo and f. First, using our knowledge of f and f,, we evaluate the
“true” cut-off point and the corresponding “true” rejection region for Hy by
numerically solving (3.3) with n = 7129 (the sample size of our real data). We
obtain ¢ = 0.000352 and the rejection region {Z : Z < —4.804 or Z > 4.327},
which are very close to those obtained by Pan (2002) with the bisection
method.

Then, we generate N = 200 samples of size n = 7129 from this “true” normal
mixture model. For each simulated sample, we estimate the cut-off point and
the corresponding rejection region for Hy by the kernel method described in
Section 3.3, using the Gaussian kernel and the choice of the bandwidths
described in Section 3.4.2. For each simulated sample, the lower and upper
bounds of the rejection region are close to the “true” boundaries. Figure 3.4
shows the boxplots of these lower and upper bounds. The variations in the
estimated bounds are due to the sampling fluctuations of the simulations, in
particular those of the edge distributions.

Let ny be the number of differentially expressed genes detected by the kernel
approach, let n; be the “true” number of differentially expressed genes, and
let n. be the number of differentially expressed genes in common. Let us
now introduce the following efficiency measure: nk#}ﬁ The closer this
measure is to one, the better is the efficiency of the nonparametric approach.
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Figure 3.4: Boxplots of the lower and upper bounds of the rejection region
for Hy, for 200 simulated samples.

Figure 3.5 shows the boxplots of this measure over the 200 simulated samples.
One can observe that the efficiency measure is greater than 0.75 for most of

simulated samples.

§0

Figure 3.5: Boxplots of the efficiency measure, for 200 simulated samples.
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3.5 Discussion and Concluding Remarks

We have reviewed and extended methods for the analysis of microarray exper-
iments. Following the principle of “letting the data speak about themselves”,
we have introduced a nonparametric kernel method to estimate the density of
the null distribution of the test null statistics. This method has four principal
advantages.

1) An assumption of normality is not required.

2) The estimation of the degrees of freedom in the conventionally used t-test
is avoided.

3) The proposed numerical method to estimate the cut-off point and the
corresponding rejection region does not require a bootstrap approach.

4) A reflection method can be found to overcome the edge effect of the kernel
estimators.

For microarray data, small sample sizes are very common. Thus the asymp-
totic justification for the t-test is not applicable, and its validity depends
on normality assumptions. Alternatives have been proposed in the litera-
ture. For example Baldi and Long (2001), Dudoit, Yang, Speed and Callow
(2002), Kerr, Martin and Churchill (2000) and Thomas, Olson, Tapscott and
Zhao (2001) proposed parametric or partially nonparametric methods.

Here, we have considered an alternative that is totally nonparametric. Fur-
thermore, the simulation studies show that, if the true state of nature is
the normal mixture, our methods yield the expected results. However, as
in most kernel estimation methods, the proposed approach is sensitive to
distributional edge effects. We adapted the reflection method to study this
problem and found a practical optimal solution to minimize the edge effects.
Nevertheless, more investigations are necessary for controlling the additional
data. It will be genious to develop a method which associates 8 to the initial
number of data.

For further studies, we will use the so-called local polynomial method to es-
timate the densities, see Hyndman and Yao (1991). The log-spline based
method may be also used. New insights about the tails of distribution can
be gained by considering these nonparametric estimation approaches. Com-
parisons can also be made with kernel and normal mixture approaches.
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4 Kernel Estimates of Hazard
Functions for Biomedical Data
Sets

Ivana Horova and Jiri Zelinka

4.1 Introduction

The purpose of this chapter is to present a method of kernel estimates in
modelling survival data. Within the framework of kernel estimates we draw
our attention to the choice of the bandwidth and propose a special iterative
method for estimation of it. The chapter also provides a bibliographical
recent survey. As regards the applications we focus on applications in cancer
research.

In recent years considerable attention has been paid to methods for analyzing
data on events observed over time and to the study of factors associated with
occurence rates for these events. In summarizing survival data, there are two
functions of central interest, namely, the survival and the hazard functions.
The well-know product-limit estimation of the survival function was proposed
by Kaplan and Meier (1958). A single sample of survival data may also be
summarized through the hazard function, which shows the dependence of the
instantaneous risk of death on time. We will use the model of random cen-
sorship where the data are censored from the right. This type of censorship
is often met in many applications, especially in clinical research or in the
life testing of complex technical systems (see e.g. Collet (1997), Hougaard
(2001), Thernau and Grambsch (2001) and the references therein).

We focus on nonparametric estimates of the hazard function and their deriva-
tives. Among nonparametric methods kernel estimates represent one of the
most effective methods (see e.g. Hardle (1991), Wand and Jones (1995),
Hérdle, Miiller, Sperlich and Werwatz (2004)).
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These methods are simple enough which makes the numerical calculation
easy and fast and the possibilities for mathematical analysis of properties of
obtained estimates are very good, too.

Kernel estimates depend on a bandwidth and on a kernel. Since the choice
of the bandwidth is a crucial problem in kernel estimates, we draw our at-
tention to this problem and propose a special iterative procedure for finding
an estimate of the optimal bandwidth.

As far as the biomedical application is concerned the attention will be paid
not only to the estimates of hazard functions but also to the estimation of
the second derivatives of these functions since the dynamics of the underlying
curve is often of the great interest. For this reason the points where the most
rapid changes of the hazard function occur will be detected.

4.2 Kernel Estimate of the Hazard Function and
Its Derivatives

Let T1,T5,...,T, be independent and identically distributed lifetimes with
distribution function F'. Let C1,Cs,...,C, be independent and identically
distributed censoring times with distribution function G which are usually
assumed to be independent from the lifetimes. In the random censorship
model we observe pairs (X;,d;),i = 1,2,...,n, where X; = min (T}, C;)
and §; = I{X; = T;} indicates whether the observation is censored or not.
It follows that the {X;} are independent and identically distributed with
distribution function L satisfying L(z) = F(z)G(z) where E = 1 — E is the
survival function for any distribution function F.

The survival function F' is the probability that an individual survives for a

time greater or equal to z. Kaplan and Meier (1958) proposed the product-
limit estimate of F":

'1j\>

EANRIE)
(z) UX@p<el \n—j+1 (4.1)

where X ;) denotes the j-th order statistics of X1, Xa,..., X, and 4(;) the
corresponding indicator of the censoring status.

The hazard function A is the probability that an individual dies at time x,
conditional on he or she having survived to that time. If the life distribution
F has a density f, for F(z) > 0 the hazard function is defined by

Az) = L) (4.2)
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and the cumulative hazard function as
H(z) = —log F(z) (4.3)

Nelson (1972) proposed to estimate the cumulative hazard function H by

Hor)= 3 20 (4.4)

n—1t+1

Parametric methods of the estimate of the hazard function are investigated
e.g. in Hurt (1992), Collet (1997), Hougaard (2001), Thernau and Grambsch
(2001) and many others.

We will focus on nonparametric estimates, namely, on kernel estimates. These
estimates were proposed and studied by many authors, see e.g. Watson and
Leadbetter (1964), Ramlau-Hansen (1983), Tanner and Wong (1983), Tan-
ner and Wong (1984), Yandell (1983), Mielniczuk (1986), Miiller and Wang
(1990a), Miiller and Wang (1990b), Miiller and Wang (1994), Uzunogullari
and Wang (1992), Patil (1993a), Patil (1993b), Patil, Wells and Marron
(1994), Nielsen and Linton (1995), Youndjé, Sarda and Vieu (1996), Jiang
and Marron (2003).

Our approach is based on the model introduced by Tanner and Wong (1983),
Miiller and Wang (1990a) and Jiang and Marron (2003).

Let [0,T1,T > 0, be such an interval for which L(T) < 1. First, let us make
some assumptions:

1° Xe Ck[0,T], ko > 2

2° Let v, k be nonnegative integers satisfying 0 <v <k —2,2<k < kg
3° Let K be a real valued function on R satisfying conditions

(i
(ii) K € Lip[-1,1]

~—

support (K) =[-1,1, K(-1) = K(1) =0

0,0<j<kj#v
1
(iii) [ 2/ K(z)dz{ (-1)"v,j=v
1
Br # 0,5 = k.

Such a function is called a kernel of order k£ and the class of these kernels
is denoted by S,k

4° Let {h(n)} be a non-random sequence of positive numbers satisfying
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lim h(n) =0, lim h(n)**'n = oco-
n—oo n—oo

These numbers are called bandwidths or smoothing parameters. To keep the

notation less cumbersome the dependence of h on n will be suppressed in our

calculations.

The definition of the kernel given above is very suitable for our next consid-
erations and moreover it will be very reasonable to assume that v and k£ have
the same parity. This fact enables us to choose an optimal kernel.

The kernel estimate of the vth derivative of the hazard function A is the
following convolution of the kernel K with the Nelson estimator H,,:

1 (v 1 r—Uu

Nik(@) = o / K ( - >dHn(u> - (4.5)
RIS D AN
_hy+1;f<< ; >n_i+1,K€Sl,k.

In the paper by Miiller and Wang (1990a) the properties of these estimate
have been investigated under additional assumptions:

nh**+1 (logn) ™" — oo, nh (logn) ™2 — 0o as n — oo.

Let us denote

1

V(K):/_ll Kz(x)dx,ﬁk:/ 2P K (x)dx

-1

Dy = /OT {A(k;!(l") }de,A - /OT 223 da-

Then, the bias and the variance can be expressed as (Miiller and Wang,
1990a):

and

Bias A} (x) = B*""AM)(z) {(_lglkﬁ’f + 0(1)} 0<z<T (4.6)

A, 1 [ M2)V(K
Var Me(@) = —= { (E)(x() )

The use of (4.6) and (4.7) provides the form of the Mean Squared Error.
The global quality of this estimate can be described by means of the Mean

Integrated Squared Error (MISFE 5\,(1"%)

+o(1)} 0<z<T. (47)
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Now we focus on the leading term MISE (5\55'}() of MISE (5\2’}() Evidently,
MISE (5\2”}() takes the form

V(K)A

MISE (A\)) = h**=) g2 Dy, + — AT (4.8)
Consider a special parameter
V(K)
S,kk—’_l = ﬁ]% 7K € Sl/,k~ (49)

This parameter is called a canonical factor and was introduced by Marron
and Nolan (1989), see also Hérdle, Miiller, Sperlich and Werwatz (2004).

Then, the asymptotically optimal bandwidth Aoyt ; minimizing MISE (5\2’/}()
with respect to h is given by

opt,v,k T 2’1’L(k‘ _ Z/)Dk ryll,k

Further, getting along in a similar way as in the paper by Horova, Vieu and
Zelinka (2002) we arrive at the formula

2k+1 A(2v + 1) 2h+1 (4.10)

. (2k+ 1)yt

MISE (A" = AT(K)=+ ’ L
( hopt,u,kK) (K) 2n(k — v)hi,ifik ( )
where
L 2w+1 1 k—v
T(K) = / 2" K (z)da </ KQ(JS)d:c) K €Sy (4.12)
—1 -1

This formula shows the effects of the kernel as well as the bandwidth on the
estimate.

The formula (4.10) offers a very useful tool for calculation of the optimal
bandwidth for derivatives of .

Let v, k be even integers. Then

1
Cu+1DEFT 34
hopt,v,k = {k‘—V ’YT,khOpt’O’k' (413)
Further, for v and k being odd integers this formula provides
1
(2v+ 1)k 2T v,
Ropte = o —=h, . 4.14
pt, v,k { 3([(3 — l/) 1k pt, 1,k ( )

Such a procedure is called a factor method (see e.g. Miiller, Stadmiiller and
Schmitt (1987), Hérdle, Miiller, Sperlich and Werwatz (2004), Horové, Vieu
and Zelinka (2002).
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4.3 Choosing the Shape of the Kernel

The formula (4.11) suggests naturally to look for a kernel that minimizing
the functional (4.12). This problem has been investigated in most of the ex-
isting literature (see e.g. Mammitzsch (1988), Granovsky and Miiller (1991),
Granovsky and Miiller (1995), Horova, Vieu and Zelinka (2002).

Let us briefly describe this problem. Let N _o = {g € L?, g has exactly k —2
changes of sign on R}. Kernels K € Aj_2 N S,; minimizing the functional
T(K) are called optimal kernels. These kernels are polynomials of degree k
having k — 2 different roots inside the interval [—1,1]. In order to emphasize
the dependence on v and k we denote these kernels by Koy 1.1 Table 4.1, 4.2,
4.3 bring some of these optimal kernels as well as the corresponding factors
Yv,i;- Below each table are the XploRe quantlets that allow for computing
and viewing these optimal kernels.

Table 4.1: Optimal kernel of order (0, k)

Y0,k Kopt,0,k

17188 —3(22 —1)I(|z| £ 1)

2.0165 33 (2% — 1)(72% = 3)I(|z| < 1)

2.0834  —1% (32 —1)(332* — 302 + 5)I(Jz| < 1)

9

S = N

Q xcsoptker02.xpl

Q XCSoptker04.xpl
Q xcsoptker06. xpl
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Table 4.2: Optimal kernel of order (1, k)

k| vk Kopt.1,k

3 | 1.4204 %m(mQ —DI(|z] <1)

5| 1.7656 —1Bx(2? —1)(922 — 5)I(|z| < 1)

7| 18931 2Da(x? —1)(1432* — 15422 + 35)I (|| < 1)
Q xcsoptker13.xpl
Q XCSoptker15.xpl
Q xcsoptker17.xpl

Table 4.3: Optimal kernel of order (2, k)
Y2,k Kopt,?,k

o O | ™

1.3925 —199(32 — 1)(52% — 1)I(|z| < 1)

16

1.6964  3L5(22 — 1)(772* — 5822 +5)I(|z| < 1)

1.8269  —3395 (32 _ 1)(175525 — 224924 + 72122 — 35)I(|z| < 1)

64

72048

Q XCSoptker24.xpl

Q xcsoptker26.xpl

Q XCSoptker28.xpl

4.4 Choosing the Bandwidth

The problem of finding the optimal bandwidth belongs to the crucial problem
of kernel estimates. This problem arises in the kernel estimates of regression

functions, densities and as well as in kernel estimates of hazard functions.

Due to censoring modified cross-validation methods can be applied for the es-

timate the optimal bandwidth (see e.g.

Marron and Padgett (1987),

Uzunogullari and Wang (1992), Nielsen and Linton (1995)). In the paper
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by Tanner and Wong (1984) the modified likelihood method was proposed.
Other methods for an estimate of the bandwidth can be also found e.g. in
papers by Sarda and Vieu (1991), Patil (1993a), Patil (1993b), Patil, Wells
and Marron (1994), Gonzales-Mantiega, Cao and Marron (1996).

Let iLopt 0,k be an estimate of hopto,5. In view of the fact that we will only
focus on the estimate MO and @ it is sufficient to estimate the optimal
bandwidth hopf 0,k since the formula (4.13) can be rewritten with hopt o,k and

hoptvg’k instead of hope,0,k and hopt,2,,. Here, we propose a special method for
estimating hopt,0,5. Our approach is based on two facts.

Firstly, let us notice that the use of hope 0k given in (4.10) means that the
leading term of variance Var(An,,, . ) and the leading term of the bias

Bias(\n ) satisfy

opt,0,k, K

Var (Moo ) = 2k {m@hmo,k,x)}z . (4.15)

In the second place, we start from the suitable representation of MISE given
in the papers by Miiller and Wang (1990b), Miiller and Wang (1994).

The aforementioned estimate of MISE is defined as
T
MISE (Ah,K) - / {17(1:, h) + b(z, h)} dz, (4.16)
0

where 0(z,h) = Var (5\;1;((33)> and b(z,h) = Bias (XhK(ﬂc)> are the esti-

mates of variance and bias, respectively, and

A z—h
h) = o [ K ) 2y

(4.17)
bz, h) = [ Anr(z — hy) K (y)dy — Mk ()
where k € Sy and
_ 1 <
= —_— ) < *
Ln(w) =1-—~ i ;I{XZ <z} (4.18)

is the modified empirical survival function.

The global bandwidth estimate

hopt 0,k = arg min MISE ()\h K)

heHy,
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satisfies /Azoptyo,k /hopt,0,. — 1 in probability,H,, denotes the set of acceptable
bandwidths. This set will be dealing with below.

Taking the relations (4.15) and (4.17) into account we arrive at the formula

for hopt,(),k::

T A z—h
1 Jo S W) s dyds

- 2kn fOT {f S\h’K(x — hy)K (y)dy — thK(x)}z dx

(4.19)

for sufficiently large n. Denoting the right hand side of this equation by v,
the last equation can be rewritten as

h = 1(h).

It means that asymptotically in terms of MISFE we are looking for the fixed

point Aept,0, of the function 1. Consider one step iterative method. Starting
(0)

with the initial approximation iLopt,(), , the sequence {lﬁzg;)t,oy 1 }520 is generated
by

PG+ 7 () s

Wt = (W on) G =0.1,2...
Since it would be very difficult to verify whether the conditions for the conver-
gence of this process are satisfied we propose to use the Steffensen’s method.

This method consists in the following steps:

19 = (hgyr0.)
20) = o(t(0))

PG+ _ 3 ()
hopt,O,k - hopt,(),ki

. a(q 2 . . s
— (19 =) 0u) /(29 =26 4+ RG] G = 0,12,

(4.20)

In terms of one step iterative methods the Steffensen’s method can be de-
scribed by the iterative function

)} — ()
Y = Sy — 2o(m) + 7

i.e.

PG+ 7 () -
hopt,O,k =V (hopt,O,k) ’ J= Oa 13 2a ce.

The Steffensen’s method (Steffensen, 1933) is based on application A2
Aitken’s methods for accelerating the convergence to a linearly convergent
sequence obtained from fixed-point iteration (see Isaacson and Keller (1966),

Stoer and Bulirsch (1980) in greater details).
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It is clear that iLopt,O,k is the simple fixed point, i.e., 1// (ilopt,O,k) # 1. Then
both iterative functions ¥ and ¥ have the same fixed point and ¥ yields at
least a second - order method for this point, i.e. a locally quadratically con-
vergent method. The relative error can be taken as a criterion for obtaining
the suitable approximation hep,o,k:
PG+ ()
hopt,O,k - hopt,O,k
7 ()
hopt,OJc

<e€

9

where € > 0 is a given tolerance, and we put ilopt,o7k = flffpfé)k

The evaluation of the right hand side in the equation (4.19) looks rather com-
plicated, but these integrals can be easily evaluated by suitable discretization;
here the composite trapeziodal rule is recommended.

Let us come back to the set H,, of acceptable bandwidths. The good choice
7,(0)

opt,0.k € H,, is very important for the iterative

of the initial approximation
process above.

We are going to show how a kernel density estimate could be useful for this
aim.

Let us describe the motivation for our procedure. First, the Koziol-Green
model is reminded (Koziol and Green, 1976). There is a natural question
about the distribution of the time censor C'. There are both theoretical
and practical reasons to adopt the Koziol-Green model of random censorship
under which it is assumed that there is a nonnegative constant p such that

F(z)? = G(z),

p = 0 corresponds to the case without censoring.

Let I, f and g be densities of L, F' and G, respectively. Then (Hurt, 1992):

I(2) = ~F(a) f(2), (4.21)

SRR

Let

Inx(z) = % Zn:K (x hXi> (4.22)
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be the kernel estimate of the density I and keep now F(x) as a known quantity.
Then, with respect to (4.21)

pli ()

Frxc(x) = Fox)

and fy, g () is an estimate of f.

Consider now an alternative estimate S\h, K of A\:

5  far(@)

/\h,K(x) = F(x) . (423)
Hence R

A (z) = m. (4.24)

Now it is easy to verify that the optimal bandwidth for lAh7 K is also the optimal
bandwidth for S\h, k- The properties of the estimate S\h, x can be investigated
in a similar way as those in the paper by Uzunogullari and Wang (1992). Let
ﬁzpt,o,k be an optimal bandwidth for lAh, k. Due to the aforementioned facts

it is reasonable to take this value as a suitable initial approximation for the
process (4.20).

The idea of the bandwidth choice for the kernel density estimate lAh’ K is very
similar to that presented for the hazard function but with the difference that
here an upper bound for the set of acceptable bandwidth is known (see e.g.
Terrell and Scott (1985), Terrell (1990), Horovd and Zelinka (2004)). Getting
along in a similar way as earlier we obtain the equation

_ [ | K2(y)inx (x — hy)dydz
20k [{f e (x — hy) K (y)dy — Iy i () }2da”

K e Soyk

where h = ﬁ:pt 0.k 1s a fixed point.

We can take A" i = hu where h,, is the upper bound defined as

opt,0,
hy = Gbyn /2R (4.25)
where 62 is an estimate of an unknown variance o2 of the data and
(2k + 1)(2k + 5)(k +1)2D4(k + 1)V (K) | T
b =2v2k+5 4.96
’ JT{ KT (2k + DT (2k + 3)52 . (420)

I' is the gamma function.
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The estimate of o2 can be done, e.g. by

52 = nilz(xﬁ)’()? (4.27)

Now the Steffensen’s method is used in the same way as above. It seems
that this process looks very complicated but our experience shows that this
procedure is faster and more reliable than the cross - validation method.

The construction of the confidence intervals is described in the paper by
Miiller and Wang (1990a). The asymptotic (1 — «) confidence interval for

)\g’}((m) is given by

N4 5‘ 5 ($)V(K)
Ai%{(x) + { (1 _hli(x))nfﬂ”ﬂ

1/2
} 11— a/2) (4.28)

where @ is the normal cumulative distribution function and L,, is the modified
empirical distribution function of L

1 n
Ln(z) = — Z L{x,<a}-
i=1

Remark. When we estimate near 0 or 7' then boundary effects can occur
because the “effective support” [x—h, z+h] of the kernel K is not contained in
[0,T]. This can lead to negative estimates of hazard functions near endpoints.
The same can happen if kernels of higher order are used in the interior.
In such cases it may be reasonable to truncate 5\h’K below at 0, i.e. to
consider A, g () = maz(Ay k(x),0). The similar considerations can be made
for the confidence intervals. The boundary effects can be avoided by using
kernels with asymmetric supports (Miiller and Wang, 1990a), (Miiller and
Wang, 1994).

4.5 Description of the Procedure

In the biomedical application the points 6 of the most rapid change, i.e.,
points of the extreme of the first derivative of A, are also of a great interest.
These points can be detected as zeros of the estimated second derivatives.
Thus, we will only concentrate on the estimate of A(9) and A(?). We focus
on such points é, 5\22)1( (é) = 0, where )\22)}( changes its sign from - to + since

only the local minima of 5\21)1( are important. It can be shown that 6 — 0 in

probability (Miiller and Wang, 1990a).
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According to our experience the kernel K € Sy

15
Koptoa(z) = 3—2(952 — 1)(72% = 3)I(Jz| < 1),704 = 2.0165 (4.29)

is very convenient for the estimate of the hazard function. In this case the
value of by defined in (4.26) is equal to by = 3.3175.

In connection with theoretical results the following kernel should be chosen
for the estimate of \(?):

105
Koptoa(z) = 1—6(1 —2%)(52? — DI (|z| < 1),724 = 1.3925 (4.30)

Now, our procedure is briefly described. It consists in the following steps:

Step 1: Estimate the density [ with (4.29) and find the estimated
optimal bandwidth ﬁ:pt,OA by Steffensen’s method.

Step 2: Put BZPt,OA = h 4 and use this value as the initial
approximation for iterative method (4.20) which yields
the suitable estimate fops,0.4.

Step 3: Construct the estimate S\go)K with the kernel (4.29) and
the bandwidth obtained in the step 2.

Step 4: Compute the optimal bandwidth for the estimate ;\512)1(
using the formula (4.13):
hopt2,a = (10)/9224h 1 6 4 = 1.87031 p1,0.4

Step 5: Get the kernel estimate of A(?) with the kernel (4.30) and
bandwidth selected in the step 4.

Step 6: Detect the zeros of )‘22)1( and construct the confidence in-
tervals.

4.6 Application

Note that all our procedures have been programmed with XploRe and are ac-
cessible in the library hazker. The quantlet XCSdensestim is computing ker-
nel density estimation while XCSdensiterband is computing the Steffensen’s
optimal bandwidth.

Q XCSdensestim.xpl

Q xcsdensiterband. xpl
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The quantlet XCSHFestim computes the kernel estimate of the hazard func-
tion and its derivatives, while the quantlet XCSHFestimci gives in addition
confidence bands.

Q XCSHFestim.xpl

Q xcsHFestimci.xpl

Finally, the Steffensen’s optimal bandwidth for hazard estimation is com-
puted with the quantlet XCSHFiterband.

Q xcsHFiterband. xpl

Now, we are going to apply the procedure described in the Section 4.5 to the
data which were kindly provided by the Masaryk Memorial Cancer Institute
in Brno (Soumarové et al., 2002), (Horova et al., 2004).

The first set of data (data file HFdatal) involves 236 patients with breast
carcinoma. The study was carried out based on the records of women who
had received the breast conservative surgical treatment and radiotherapy as
well in the period 1983-1994. The patients with the breast carcinoma of the
I. and II. clinical stage and with T1 and T2 tumors where only included to
this study. Of 236 patients 47 died by the end of the study and 189 were
thus censored. The study was finished in the year 2000.

The period of time from the time origin to the death of a patient is the survival
time; the time of the remaining individuals is right censored — i.e. those who
have been alive in the end of study in 2000.

In this study patients were not recruited at exactly the same time, but accrued
over a period of months. The period of time that a patient spent in the
study, measured from the date of surgery (month/year), is often referred to
as patient’s time (Collet, 1997). Figure 4.1 shows the individual patients’
time for the complete data set of 236 patients.

First patients entered the study in 1983, the last patients in 1995 and the
study was finished in 2000. Each of 236 vertical segments shows the time
which individual patients spent in the study.

In Figure 4.2 the Kaplan-Meier estimate of the survival function F' is pre-
sented. Figure 4.3 shows the estimate of the density I. In Figure 4.4 the
shape of the function defined in (4.19) is presented. Figure 4.5 brings the es-

timate X;O)K constructed by the proposed procedure including the confidence
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Figure 4.1: The patients’ time for the complete data set of 236 patients
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intervals and Figure 4.6 shows the estimate A§L2)1<- Estimated points of the

most rapid change él, 0, are defined as zero of the estimated second deriva-
tives with sign changes from — to +. The main change obviously occurs for
él = 51.39 months whereas the second change at ég = 128.87 months. These
figures indicated that patients run a high risk about 50 months after surgical
treatment. Then it is followed by a low risk and higher risk occurs again in
the 100th month approximately.
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Figure 4.2: The Kaplan-Meier estimate of the survival function F'
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Figure 4.4: Tterative function and the fixed point

The influence of the bandwidth A to the shape of the estimate A;L)K of the
hazard function A can be seen on Figure 4.7 where the family of estimates in-
dexed by the bandwidth is presented. The estimate for hopt,0,4 is highlighted
in the figure.

Table 4.6 brings the sequence of iterations generated by the method (4.20)
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Figure 4.5: The estimate XELO)K of the hazard function (solid line), the confi-
dence intervals (dashed line)
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Figure 4.6: The estimate 5\}(12)K

for tolerance e = 1.0 x 1076,

The second study is concerning the retrospective study of 222 patients with
uterine carcinoma (data file HFdatal). These patients were treated in the pe-
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200
months

Figure 4.7: 3D view of the family of estimates

Table 4.4: Sequence of iterations generated by the iterative function in

Figure 4.4
j 0 1 2 3
h) ok | 22.526490  51.517280 47411171  45.548046
j 4 5 6 7
) ok | 45.222855 45.205395 45.205249  45.205249

riod 1980 — 1998 at the Masaryk Memorial Cancer Institute in Brno (Horova
et al., 2004). All patients had a surgical treatment. Of the complete set of
222 patients 27 died of cancer causes. The patients of the first clinical stage
were included to this study.

Figures 4.8, 4.9 and 4.10 present the Kaplan-Meier estimate of the survival
function F, the estimate 5\20)1( of the hazard function including the confidence

intervals and the estimate of )\f}( with points of the most rapid change él, 0s.

Iterations generated by the method (4.20) for this data set and tolerance
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Figure 4.8: The Kaplan-Meier
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Figure 4.9: The estimate X;LO)K of the hazard function (solid line), the confi-
dence intervals (dashed line)

€ = 1.0 x 1075 are presented by Table 4.6.
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Figure 4.10: The estimate 5\22)1(

Table 4.5: Sequence of iterations generated by method 4.20 for the set of
222 patients

j 0 1 2 3 4
hD) o | 44467283 69.586408 69.335494 69.330511  69.330523
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5 Partially Linear Models

Wolfgang Hardle and Hua Liang

5.1 Introduction

Partially linear models (PLM) are regression models in which the response
depends on some covariates linearly but on other covariates nonparametri-
cally. PLMs generalize standard linear regression techniques and are special
cases of additive models. This chapter covers the basic results and explains
how PLMs are applied in the biometric practice. More specifically, we are
mainly concerned with least squares estimators of the linear parameter while
the nonparametric part is estimated by e.g. kernel regression, spline ap-
proximation, piecewise polynomial and local polynomial techniques. When
the model is heteroscedastic, the variance functions are approximated by
weighted least squares estimators. Numerous examples illustrate the imple-
mentation in practice.

PLMs are defined by
Y = XTB+g(T) +, (5.1)

where X and T are d-dimensional and scalar regressors, (3 is a vector of
unknown parameters, g(-) an unknown smooth function and & an error term
with mean zero conditional on X and 7.

The PLM is a special form of the additive regression models Hastie and
Tibshrani (1990); Stone (1985), which allows easier interpretation of the
effect of each variables and may be preferable to a completely nonparametric
regression since the well-known reason “curse of dimensionality”. On the
other hand, PLMs are more flexible than the standard linear models since
they combine both parametric and nonparametric components.

Several methods have been proposed to estimate PLMs. Suppose there are n
observations {X;,T;,Y;}.—,. Engle, Granger, Rice and Weiss (1986), Heck-
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man (1986) and Rice (1986) used spline smoothing and defined estimators
of B and g as the solution of

arg min 1 Z{K —X;"B—g(T)}* + )\/{g”(u)}Zdu. (5.2)

n
B.9 i=1

Speckman (1988) estimated the nonparametric component by W+, where W
is a (n X ¢)—matrix of full rank and ~ is an additional parameter. A PLM
may be rewritten in a matrix form

Y = XB+ Wy +e. (5.3)

The estimator of 3 based on (5.3) is

Bs = {XT(I - Py)X} HX (I - Py)Y}, (5.4)

where Py = WOWVTW)™IWT is a projection matrix and I is a d—order
identity matrix. Green, Jennison and Seheult (1985) proposed another class
of estimates

Bess = {XT(I - W) X)) HXT(I - Wp)Y)}

by replacing W in (5.4) by another smoother operator Wy,. Chen (1988)
proposed a piecewise polynomial to approximate nonparametric function and
then derived the least squares estimator which is the same form as (5.4).
Recently Hérdle, Liang and Gao (2000) have systematically summarized the
different approaches to PLM estimation.

No matter which regression method is used for the nonparametric part, the
forms of the estimators of 8 may always be written as

XTI -W)X} Hx (I -W)Y},

where W is a projection operation. The estimators are asymptotically normal
under appropriate assumptions.

The next section will be concerned with several nonparametric fit methods
for g(t) because of their popularity, beauty and importance in nonparametric
statistics. In Section 5.4, the Framingham heart study data are investigated
for illustrating the theory and the proposed statistical techniques.
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5.2 Estimation and Nonparametric Fits

As stated in the previous section, different ways to approximate the non-
parametric part yield the corresponding estimators of 3. The popular non-
parametric methods includes kernel regression, local polynomial, piecewise
polynomial and smoothing spline. Related works are referred to Wand and
Jones (1995), Eubank (1988), and Fan and Gijbels (1996). Hérdle (1990)
gives an extensive discussion of various nonparametric statistical methods
based on the kernel estimator. This section mainly mentions the estimation
procedure for § when one adapts these nonparametric methods and explains
how to use XploRe quantlets to calculate the estimates.

5.2.1 Kernel Regression

Let K(-) be a kernel function satisfying certain conditions and h,, be a band-
width parameter. The weight function is defined as:

w52 /355

Let gn(t, ) = Y1) wni(t)(Y; — X, B) for a given 3. Substitute g,,(T}, 3) into
(5.1) and use least square criterion. Then the least squares estimator of 5 is
obtained as

Bir = (XTX) XY,

where XT = ()?1,...,)?”) with )~(j = X; — Y0 wni(Tj)X; and YT =
(Y1,...,Y,) with Y; =Y; — 31 | wy;(T;)Y;. The nonparametric part g(t) is
estimated by:

gn Z an Y X ﬂKR)

When €1,...,e, are identically distributed, their common variance o? may

be estimated by 72 (Y XﬁKR) (Y XﬁKR)
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For detailed discussion on asymptotic theories of these estimators we refer to
Hérdle, Liang and Gao (2000) and Speckman (1988). A main result on the

estimator fkg is:

THEOREM 5.1 Suppose (i) supg<,<; E(| X|P|t) < oo and ¥ = Cov{X —
E(X|T)} is a positive definite matriz. (i) g(t) and E(x;|t) are Lipschitz
continuous; and (iii) the bandwidth h =~ An='/°> for some 0 < X\ < co. Then

Vi(Bxr — B)-5N(0,0°S7Y).

In XploRe the quantlet plmk calculates the estimates BKR, 72 and g, (t). Its
syntax is the following:

plmest=plmk(x,t,y,h)
Q plmk.xpl

Input parameters:

x: the linear regressors

t: represents the non-linear regressors
y: the response

h: determines the bandwidth

Output parameters:

plmest.hbeat: estimate the parameter of X
plmest.hsigma: estimate the variance of the error
plmest.hg: estimate the nonparametric part

5.2.2 Local Polynomial

The kernel regression (or local constant) can be improved by using local
linear, more generally, local polynomial smoothers since they have appealing
asymptotic bias and variance terms that are not adversely affected at the
boundary, Fan and Gijbels (1996).

Suppose that the (p+ 1)-th derivative of g(t) at the point ¢y exists. We then
approximate the unknown regression function g(t) locally by a polynomial of
order p. A Taylor expansion gives, for ¢ in a neighborhood of g,
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Simulation comparison

blue(thin):real data
red(thick):fitting

g(T) and its estimate values

Figure 5.1: The simulation results for nonparametric function via quantlet
plmk. Real data (thin) and the fitting (thick)

Q XCSplm0O1.xpl

g(t) = g(to) + g/(to)(t —tp) + g(z;(!to) (t— t0)2 T

def i aj(t — to)’. (5.5)
j=0

To estimate § and g(t), we first estimate a; as the functions of 3, denoted
as a; (), by minimizing

2
n

p
Z Yz‘—XiTﬁ—Zaj(Ti—to)j Kn(T; — to), (5.6)
i=1 =0

where h is a bandwidth controlling the size of the local neighborhood, and
Kp(-) = K(-/h)/h with K a kernel function. Minimize
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2

S RYi- X750 (BT —to) 5 (5.7)

i=1 j=0

Denote the solution of (5.7) by 8,. Let a;(8,) be the estimate of o, and
denote by &, j = 0,...,p. It is clear from the Taylor expansion in (5.5)
that vla@;y, is an estimator of g (to) for j =0,...,p. To estimate the entire
function ¢U )() we solve the above weighted least squares problem for all
points tg in the domain of interest.

It is more convenient to work with matrix notation. Denote by Z the design
matrix of 7" in problem (5.6). That is,

1 (Ti—to) ... (Ti—to)?
z=|: :
1 (Th—t) ... (Th—ty)?

Set Y = (V1,---,Y,)7T and a(8) = (ao(B3), - ,ap(8))". Let W be the
n x n diagonal matrix of weights: W = diag{K,(T; — to)}. The weighted
least squares problems (5.6) and (5.7) can be rewritten as

mﬁin (Y = X8 —Za)'W(Y — X3 — Za),
min{Y — X3 — Za(8)} {Y — X — Za(5)},

with «(8) = (ao(ﬁ),...,ap(ﬁ))T. The solution vectors are provided by
weighted least squares and are given by

Bp = X' {I-Z(2Z"WZ)'Z"W}X| X {I-Z(Z"WZ) 'Z"W}Y

a = (Z2'"WZ) 'Z"W(Y — X/Lp)

Theoretically the asymptotic normality is still valid under the conditions
similarly to those of Theorem 5.1. More detailed theoretical discussions are
referred to Hamilton and Truong (1997).

The quantlet plmp is assigned to handle the calculation of ﬁLp and . Its
syntax is similar to that of the quantlet plmk:
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plmest=plmp(x,t,y,h,{p})

where x,t,y, h are the same as in the quantlet plmk. p is the local polynomial
order. The default value is p = 1, meaning the local linear estimator.

As a consequence, the estimate of the parameter equals
(1.2019, 1.2986, 1.3968)

and the estimates of the nonparametric function is shown in Figure 5.2. There
exist obvious differences between these results from the quantlet plmk and
plmp. More specifically, the results for parametric and nonparametric es-
timation from the quantlet plmp are preferable to those from the quantlet
plmk.

Local Polynomial

blue(thin):real data
red(thick):fitting

g(T) and its estimate values
0,5

Figure 5.2: The simulation results for nonparametric function via quantlet
plmp. Real data (thin) and the fitting (thick).

Q XCSplm02.xpl

5.2.3 Piecewise Polynomial

We assume ¢ is Holder continuous smooth of order p = (m+r), that is, let r
and m denote nonnegative real constants 0 < r < 1, m is nonnegative integer
such that
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lg™ () — g™ ()| < M|t' —t|", for t,t' € [0,1].

Piecewise polynomial approximation for the function g(-) on [0, 1] is defined
as follows. Given a positive M,,, divide [0, 1] in M,, intervals with equal length
1/M,,. The estimator has the form of a piecewise polynomial of degree m
based on the M, intervals, where the (m + 1)M,, coefficients are chosen by
the method of least squares on the basis of the data. The basic principle is
concisely stated as follows.

Let I,,(t) be the indicator function of the v-th interval, and d, be the
midpoint of the v-th interval, so that I,,(t) = 1 or 0 according to t €
(v —1)/M,,v/M,) for v=1,...,M, and [1 — 1/M,,1] or not. P,,(t) be
the m-order Taylor expansion of g(t) at the point d,. Denote

m
P, (t) = Z ajutj for t in the v-th interval.
j=0

Consider the piecewise polynomial approximation of g of degree m given by

M’Vl

gn(t) = Z 1, () P (1)

v=1

Suppose we have n observed data (X1,71,Y1),..., (Xn,Th,Yn). Denote

(T oo L (T)T oo I (Ty) oo Lo, (TOTT
z=| : L z :

Ia(T) ... La(T)T)r oo Lun,(Tn) oo Lo, (To)TO

and
T/g = (a’017"'?am13a027'-')am27"'7a0M"7"'7a/mM.,L)T
Then u
g’;kL(Tl) Zu:w1 Inu(Tl)Pnu(Tl)
: = = Zng.

g;;(Tn) Zyznl I (T0) P (T))
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Hence we need to find 5 and n, to minimize

(Y — X3~ Zng) (Y — X — Zng).

Suppose that the solution of minimization problem exists. The estimators of
B and 7, are

Gep = (XT(1-P)X}IXT(I-P)Y

and npg = A(Y — Xapp), where A = (ZTZ)"'Z" and P = ZA. The esti-
mate of g(t) may be described

gn(t) = 2(ZTZ) " Z7 (Y — XBpp)
for a suitable z.

THEOREM 5.2 There exist positive definite matrices Yoo and g1 such
that both Cou(X|t) — Xgo and Xg1 — Cov(X|t) are nonnegative definite for
all t € [0,1]. Suppose that lim, ..o n " M, = 0 for some A € (0,1) and

limy, o0 /AM P = 0. Then /n(Bpp — B) —= N(0,0251) .

The quantlet plmp evaluates the estimates Bpp and gn(t) stated above. Its
syntax is similar to those of the two previous quantlets:

plmest=plmp(x,t,y,m,mn)

where m and mn represent m and M, respectively. We now use the quantlet
plmp to investigate the example considered in the quantlet plmk. We assume
m = 2 and M,, = 5 and compute the related estimates via the quantlet plmp.

The implementation works as follows.
Q xcsp1mo3. xpl

The result for parameter (3 is plmest.hbeta= (1.2,1.2999,1.3988)T. Alter-
natively the estimates for nonparametric part are also given.
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5.2.4 Least Square Spline

This subsection introduces least squares splines. We only state its algorithm
rather than the theory, which can be found in Eubank (1988) for an overall
discussion.

Suppose that g has m — 1 absolutely continuous derivatives and m-th deriva-
tive that is square integrable and satisfies fol {g\™ (t)}2dt < C for a specified
C > 0. Via a Taylor expansion, the PLM can be rewritten as

Y =X"84+> ;797" + Rem(T) + e,
j=1

where Rem(s) = (m — 1)!_1 fol{g(m) (t)(t—s)f’if_l}2 dt. By using a quadrature
rule, Rem(s) can be approximated by a sum of the form Z?Zl di(t—t;)7 "
for some set of coefficients dy, ...,d, and points 0 < t1,...,< t < 1. Take
abasis Vi(t) =1, Va(t) = ¢, ..., Vi (£) = t™ L Vit () = (t —t1)™ 71, L,
Vinak(t) = (t —t)™ ! and set

def
n:(a17"'aam7d17---;dk) é (7717"'377m+k)—r

The least squares spline estimator is to minimize

n m-+k
o1
ar%mlnﬁ E Y- X3~ E n; V5 (T;)
M i=1 j=1

Conveniently with matrix notation, denote Z = (Z;;) with Z;; = {V;(T;)} for
i=1,...,nand j=1,.... m+kand X = (X1,...,X,,)". The least squares
spline estimator is equivalent to the solution of the minimizing problem

(Y —=XB—Zn)" (Y — X3 — Zn).

If the problem has an unique solution, its form is the same as (Bpp, Tng) in the
subsection about piecewise polynomial. Otherwise, we may use a ridge esti-
mator idea to modify the estimator. plmls is concerned with implementation
of the above algorithm in XploRe.
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plmest=plmls(x,t,y,m,knots)
Q XCSplm0O4.xpl

Input parameters:

x: n X d matrix of the linear design points

t: n x 1 vector of the non-linear design points
y: n X 1 vector of the response variables

m: the order of spline

knots: k X 1 vector of knot sequence knots

Output parameters:
plmest.hbeat: d x 1 vector of the estimate of the parameter
plmest.hg: the estimate of the nonparametric part

5.3 Heteroscedastic Cases

When the variance function given covariates (X, T') is non-constant, the esti-
mators of 3 proposed in former section is inefficient. The strategy of overcom-
ing this drawback is to use weighted least squares estimation. Three cases
will be briefly discussed. Let {(Y;, X;,T;),i =1,...,n} denote a sequence of
random samples from

where X, T; are the same as those in model (5.1). & are i.i.d. with mean
0 and variance 1, and o? are some functions, whose concrete forms will be
discussed later.

In general, the least squares estimator ELS is modified to a weighted least
squares estimator

n

Bw = (Z %)?i)?i—r)_l (zn: %)?zﬁ) (5.9)
i=1

i=1

for some weight v;, i = 1,...,n. In our model (5.8) we take v; = 1/02. In
principle the weights +; (or 0?) are unknown and must be estimated. Let

%
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{9i, i = 1,...,n} be a sequence of estimators of v. One may define an
estimator of 8 by substituting ~; in (5.9) by 7;. Let

n -1 n
Bwis = (Z:Y\iXiXiT> <Z%X1Yi>
i=1

i=1

be the estimator of 3.

Under suitable conditions, the estimator EWLS is asymptotically equivalent to
that supposed the function o2 to be known. Therefore SwLs is more efficient
than the estimators given in the previous section. The following subsections
present three variance functions and construct their estimators. Three non-
parametric heteroscedastic structures will be studied. In the remainder of
this section, H(-) is always assumed to be unknown Lipschitz continuous.

5.3.1 Variance Is a Function of Exogenous Variables
Suppose 0? = H(W;), where {W;;i = 1,...,n} are design points, which are
assumed to be independent of & and (X;,T;) and defined on [0, 1] in the case
where {W;;i = 1,...,n} are random design points. Let BLS and gn(-) be
initial estimators of 8 and g¢(-), for example, given by kernel regression in
Section 5.2.1. Define

n

H,(w) = anj(w){Yj - XJTBLS — (T}

Jj=1

as the estimator of H(w), where {Wm (t);i=1,...,n} is a sequence of weight
functions satisfying appropriate assumptions. Then let 52, = H,, (W;).

ni
Quantlet plmhetexog performs the weighted least squares estimate of the

parameter. In the procedure of estimating the variance function, the estimate

given by plmk is taken as the primary one.
Q xcsp1mos. xpl
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5.3.2 Variance Is an Unknown Function of T
Suppose that the variance o? is a function of the design points T}, i.e., o
H(T;), with H(-) an unknown Lipschitz continuous function. Similarly to
subsection 5.3.1, we define the estimator of H(-) as

2 _
=

Ha(t) = > Wi (0{Y; — X[ Bus — Ga(T1)}>.
j=1

Quantlet plmhett calculates the weighted least squares estimate of the pa-
rameter in this case. In the procedure of estimating the variance function,
the estimate given by plmk is taken as the primary one.

plmest=plmhett(x,t,y,h,hl)
Q xcsp1mos. xpl

5.3.3 Variance Is a Function of the Mean

We consider the model (5.8) with 02 = H{X," 3+ ¢(T})}, which means that

the variance is an unknown function of the mean response.

Since H(-) is assumed to be completely unknown, the standard method is
to get information about H(-) by replication, i.e., we consider the following
“improved” partially linear heteroscedastic model

where Y;; is the response of the j-th replicate at the design point (X;,T;),
&i; are ii.d. with mean 0 and variance 1, 3, g(-) and (X;,T;) are the same
as before.

We compute the predicted value X, ELS + 9.(T;) by fitting the least squares
estimator s and nonparametric estimator g, (7;) to the data and the resid-
uals Y;; — {X,T Brs + §u(T)}, and estimate o2 by

m;

1 Bis+35
67 = — > [Viy — {X Bus + Gu (T},
7,]:1
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where each m; is unbounded.

Quantlet plmhetmean executes the above algorithm in XploRe. For calcula-
tion simplicity, we use the same replicate in practice. The estimate given by
plmk is taken as the primary one.

plmest=plmhetmean(mn,x,t,y,h)
Q XCSplmO7.xpl

5.4 Real Data Examples

In this section we analyze the well known Framingham data set and illustrate
the calculation results when using the quantlets introduced in Section 5.2.

EXAMPLE 5.1 We use the data from the Framingham Heart Study which
consists of a series of exams taken two years apart, to illustrate one of the
applications of PLM in biometrics. There are 1615 men, aged between 31 to
65, in this data set. The outcome Y represents systolic blood pressure (SBP).
Covariates employed in this example are patient’s age (T') and the serum
cholesterol level (X ). Empirical study indicates that SBP linearly depends
upon the serum cholesterol level but nonlinearly on age. For this reason, we
apply PLM to investigate the function relationship between Y and (T, X).

Specifically, we estimate § and g(-) in the model

For nonparametric fitting, we use a Nadaraya-Watson weight function with
quartic kernel

(15/16)(1 — u*)*I(|u| < 1)

and choose the bandwidth using cross-validation.

The estimated value of the linear parameter equals to 10.617, and the es-
timate of g(7) is given in Figure 5.3. The figure shows that with the age
increasing, SBP increases but looks like a straight line. The older the age,
the higher the SBP is.
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Framingham Data: SBP versus Age

80
h

SBP
75

70
h
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Figure 5.3: Relationship SBP and serum cholesterol level in Framingham
Heart Study.

Q XCSplm08.xpl

EXAMPLE 5.2 This is an example of using PLM to analyze the NHANES
Cancer data. This data set is a cohort study originally consisting of 8596
women, who were interviewed about their nutrition habits and when later
examined for evidence of cancer. We restrict attention to a sub-cohort of
3145 women aged 25 — 50 who have no missing data the variables of interest.
The outcome Y is saturated fat, while the predictors include age, body mass
index (BMI), protein and vitamin A and B intaken. Again it is believable
that Y depends as in (5.2) nonlinearly on age but linear upon other dummy
variables.

In this example we give an illustration of the plmls for the real data. We
select m = 3 and the knots at (35,46). As a consequence, the estimates of
linear parameters are (—0.162,0.317, —0.00002, —0.0047), and the nonpara-
metric estimated are shown in Figure 5.4. The curve of the nonparametric
part in this data set is completely different from that of the above example
and looks like arch-shape. The pattern reaches to maximum point at about
age 395.

We also run other quantlets for these two data sets. We found that the es-
timates of nonparametric parts from different quantlets have similar shapes,
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NHANES Data: Saturated Fat vs Age

Saturated Fat

75

T T T T T T
25 30 35 40 45 50
Age

Figure 5.4: NHANES regression of saturated fat on age.
Q XCSnhanes.xpl

although differences in the magnitude of the estimates from different estima-
tion methods are visible.
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6 Analysis of Contingency Tables

Masahiro Kuroda

6.1 Introduction

This chapter presents analysis of log-linear models for contingency tables. In
analysis of contingency tables, we are interested in associations and inter-
actions among the categorical variables or interpretations of the parameters
describing the model structure. Then our goal is to find a best model such
that the model structure is simple and the model has few parameters.

The log-linear models which is used in analysis of contingency tables are a
generalized linear model for counted data and can easily describe the variety
of associations and interactions among the variables. To search a best model,
we assess the effects on interaction terms in log-linear models by goodness of
fit tests. The methodology for analysis of contingency tables is described in
many books, for example, Bishop et al. (1975), Everitt (1977) and Agresti
(2002).

This chapter is organized as follows: Section 11.2 introduces log-linear models
and generalized linear models. Moreover we provide the procedures to find
the best model by using goodness of fit tests for independence and comparing
two log-linear models. Section 11.3 presents the XploRe functions to make
inferences for log-linear models. Contingency table analysis using XploRe are
illustrated in Section 11.4.

6.2 Log-linear Models

Let Y = (Y1, Ya,...,YDp) be categorical variables. Then a rectangular (N x D)
data matrix consisting of IV observations on Y can be rearranged as a D-way
contingency table with cells defined by joint levels of the variables. Let n;; .+
denote the frequency foracell Y = (¢, 7,...,t) and n = {n;;.+}. Suppose that
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Y has a multinomial distribution with an unknown parameter 6 = {9¢j”_t},
where 6;; + > 0 and ) 6;;.+ = 1. The log-linear model is expressed in the
form

logd = XA, (6.1)

where X is a D X r design matrix and A is an r x 1 parameter vector. When
Y has a Poisson distribution, the log-linear model is re-written by

logm = XA, (6.2)

where m = {m;; = N6;;._} is the vector of expected frequencies.

6.2.1 Log-linear Models for Two-way Contingency Tables

Consider an I x J contingency table. The log-linear model is represented by
log 91‘]‘ = )\0 + /\11 + )\? + )\12 (63)

YR

for all ¢ and j, under the constraints of the A terms to sum to zero over any
subscript such as

1 J
SA=0, DY A=0, D AZ=) AP=0 (6.4)
i i=1 j=1

The log-linear model given by (6.3) is called the saturated model or the full
model for the statistical dependency between Y; and Y5.

By analogy with analysis of variance models, we define the overall mean by

1 I J
)\0 = [7JZZIOg9U7

i=1j=1

the main effects of Y7 and Y5 by

J
1
)\11 = jZIOgHW — )\0,
j=1

I
Z IOg Gij — )\07
i=1

and the two-factor effect between Y7 and Y5 by

2

~l =

A7 =logfi; — (Al + A7) — Ao
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Then the main and two-factor effects are determined by the odds and odds
ratios, and can be written by

J
1 0
P — § 1 g
1 J Og 071/‘7 ’

I
)
i
j 7;210

and

1 KK 6,6
12 igYi’ g’
N =gl 2o

i'=1j'=1

For the independence model that Y7 is statistically independent of Y3, the cell
probability 6;; can be factorized into the product of marginal probabilities
0;+ and 0, ;, that is,

bij = 0i+04;,

where 6;, = Z}]=1 6;; and 64, = Zle 6;;. Then the two-factor effect is

0 0
)\112_ 1 z+ +7 z++] _07
so that the log-linear model for the independence model is expressed by

log fij = Ao + Aj + A7,

for all ¢ and j.

6.2.2 Log-linear Models for Three-way Contingency Tables

For an I x J x K contingency table, the saturated log-linear model for the
contingency table is

logHijk :>\0+)\ZI+)\3+)\z+)\3jz+)\z +/\2 +)\'}j2k32?
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for all 4, j and k. The X terms satisfy the constraints:

K
ZAl Z/\Q > A =0,
k=1

W

12 _ 12 _ 23 _
§ Aij_E M= =N AB =,
i=1 Jj=1 k=1

I J K

E 123 § 123 § : 123 __
)‘mk - >\’L]k' - /\ijk =0.

i=1 j=1 k=1

We define the X terms as follows: The overall mean is given by

I J
0 [JKZZ logHijk.

The main effects of Y7, Y5 and Y3 are

| JK
A= EZZIOgaijk — Ao,
Jj=1k=1
| J K
A3 ﬁzzlogeijk*/\ov
i=1 k=1

s
I
<[
-
]~

-
Il
-
<.
I
-

log eijk — )\().
Each interaction effect is given by

)\12 KZ]QgQUk (All —I—)\?) — Ao,

k=1
J
1371 (2 3y _
)\i’ = JZ]Ogerk ()\Z +>\k) )‘07
Jj=1
I
A23—121 Oije — (A3 +A3) — A
k= I 0g Uijk j k 0
=1

and

A =10g ik — (A + M+ XA50) — (A + A7+ A%) — Xo.
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Like log-linear models for two-ways contingency tables, the A terms in the
log-linear models for three-way contingency tables directly relate to the odds
and odds ratios.

Here we introduce an important class of independence models that are called
hierarchical log-linear models. In the hierarchical models, if high-order A
terms with certain variables are contained in the model, all lower-order A
terms with these same variables are included. For instance, when a log-
linear model contains {A;?}, the log-linear model also contains {\;} and
{)\]2} Table 6.1 is the list of the hierarchical log-linear models for three-way
contingency tables. Interpretations of parameters in the log-linear models
refer then to the highest-order terms.

In log-linear models for conditional independence models, the two-factor ef-
fects correspond to partial associations. For instance, the log-linear model
[Y1Y3][Y2Y3] permits two-factor terms for associations between Y; and Ya,
and Y5 and Y3, but does not contain a two-factor term for an association
between Y7 and Y3. Then the log-linear model [Y7Y5][Y2Y3] specifies condi-
tional independence between Y; and Y3 given Y5. In the log-linear model
[Y1Y2][Y1Y3][Y2Y35] called